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Anotace

Práce se zabývá zpracováńım 24 družicových radarových sńımk̊u metodou radarové inter-
ferometrie. Sńımky byly poř́ızeny z družic ERS-1/2 v 90. letech 20. stolet́ı. Sńımky jsou
převzorkovány na jeden z nich, utvořeny všechny možné dvojice sńımk̊u a z nich interfer-
ogramy. Z interferogramů byly vybrány nejv́ıce koherentńı, které následně vstoupily do
daľśıho zpracováńı za účelem zmapováńı pokles̊u na výsypkách.

Mapovány jsou dvě oblasti: Ervěnický koridor a oblast kolem obce Košt’any (okres Teplice).
V obou oblastech jsou postaveny umělé stavby (silnice, železnice) na výsypkách, a tyto
stavby v pr̊uběhu času klesaj́ı. Ćılem projektu je zjistit rychlost poklesu.

Nejvýznamněǰśım problémem radarové interferometrie jsou chyby v rozbaleńı fáze, které
se zde snaž́ıme odhadnout a opravit na základě rezidúı z vyrovnáńı – vyrovnáńı je pak
iterativńı. Metoda ale neńı schopna nalézt optimálńı řešeńı, jelikož by se jednalo o NP-
úplný problém, tj. problém neřešitelný v polynomiálńım čase, a tak prohledáváme jen
část stavového prostoru.

Výsledky nejsou př́ılǐs povzbuzuj́ıćı, avšak jsou definovány d́ılč́ı problémy, které je nutno
řešit, a po jejich vyřešeńı očekáváme výrazné zlepšeńı výsledk̊u.

Abstract

This thesis deals with the processing of 24 radar scenes, acquired by the ERS-1/2 satel-
lites, using the radar interferometry method. The scenes were acquired in 1990s. The
scenes were first resampled to one of them, then paired to all possible combinations and
interferograms were created from each pair. Out of these, the most coherent were selected
for postprocessing. The purpose is to map the temporal progress of subsidence on waste
dumps.

Two areas are mapped: the Ervěnice corridor (known for large subsidences in 1980s) and
the area around the Košt’any village near Teplice. In both areas, artificial objects (roads,
railways) are built on waste dumps, and these objects are assumed to subside. The goal
of the project is to find out the velocity of the subsidence.

The key problem of radar interferometry are phase unwrapping errors, which we try to
estimate and correct on the basis of adjustment residues – the adjustment then becomes
iterative. However, finding the optimal solution is a NP-hard problem, unsolvable in a
polynomial time, and therefore our method searches only a part of the state space.

Unfortunately, the results are not nice, but particular problems of the method are defined,
and we expect a significant improvement after they are solved.
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Chapter 1

Introduction

Radar interferometry (InSAR) is a method of processing two SAR images acquired by an
airplane or a satellite. The satellite transmits a radar signal and receives the echo from a
wide swath (about 100 km), allowing to process a large area at the same time.

Synthetic aperture radar (SAR), in comparison to a generic radar, allows to preserve
not only the amplitude of the transmitted and received signal, but also its phase. Radar
wavelength is in the order of centimeters, allowing to recognize a shift of an imaged object
in the order of centimeters - even a few milimeters, if an enhanced processing method is
used.

The method can be used for DEM generation, for deformation mapping or for atmospheric
delay mapping. In case of DEM generation, the deformations are assumed not to occure
and atmospheric delay is treated as noise. For deformation mapping, a DEM is required
to be subtracted, and atmospheric delay is again treated as noise. In case of atmospheric
mapping, a DEM is required to be subtracted, and a stable area should be used.

Unfortunately, InSAR only works in a coherent area. To be functional, the method
requires that two images, which are processed together into an interferogram, are very
similar to each other. The interferogram is the difference in phase of the two images,
and the phase difference is required to change slowly within the imaged area. In practice,
it means that the object surface must not change significantly between the two times of
acquisition. On the other hand, if an object, ideally contained in more imaged pixels,
moves as a whole, it can be seen in the interferogram and recognized as a deformation.

An ideal area to map by InSAR (with regard to coherence) is a city. It contains many
artificial object, such as buildings, roads or bridges, which often reflect the radar signal
back to the satellite, and their surface does not change within many years. On the other
hand, water surfaces are always decorrelated, and so are vegetated areas, agricultural
fields etc.

Enhanced processing methods (Repeat-pass InSAR, Permanent Scatterers) also allow to
eliminate some noise effects, such as atmospheric delay, orbit error influence, and also
allow to compute DEM error. These methods require many more than two SAR images,
and the result is the deformation progress in time, not only the deformation between the
two times of acquisition. However, these methods again process two SAR images into an
interferogram – they differ from the conventional InSAR only in the postprocessing.

13



14 CHAPTER 1. INTRODUCTION

This thesis deals with the Repeat-pass InSAR and uses 24 SAR scenes for processing.
The first part contains the InSAR theory, the second part describes the data, processed
area, processing procedure and results. Interferometric processing was performed in the
GAMMA software, postprocessing was implemented in MATLAB by the author.



Chapter 2

The Basics of the SAR
Interferometry

Radar interferometry processes a pair of radar scenes (acquired either by an airplane,
or a satellite) in order to get a digital elevation model (DEM). It can also be used for
geophysical deformation monitoring, or atmospheric monitoring.

This thesis deals only with satellite radar interferometry. A significant advantage of using
satellites is that the position of the radar centre is known to the accuracy of centimeters;
on the other hand, the satellite’s altitude is much higher than an airplane’s – this requires
different processing techniques.

In comparison to other remote sensing techniques, radar interferometry takes advantage
not only of the magnitude of the signal, but also of its phase. While the signal magnitude
corresponds to the reflectivity of the ground, the phase ϕ corresponds to the distance r
between the satellite (slant range) and the reflector which is

r = n · λ+ ϕ
λ

2π
(2.1)

where n is an integer ambiguity and λ is the radar wavelength.

The interferometric processing uses the reflectivity information only for coregistration of
the images; for DEM creation, deformation mapping and exploration of the atmosphere,
only the phase information is used.

2.1 Terminology

In interferometry, two satellite scenes are used, no matter whether acquired by two satel-
lites or by one satellite in different passes. Let us call one of the scene master and the
other one slave. All results are then related to the master scene.

If more scenes are to be processed, scene pairs must be created first, either by constructing
all pairs, or a half of them (exchanging master and slave scene should not make any
difference if their orbits are accurate enough).

15



16 CHAPTER 2. THE BASICS OF THE SAR INTERFEROMETRY

The distance between the satellites in the moment of acquisiton of the scenes is called
(spatial) baseline B (it can vary throughout the image if the satellite tracks are not
exactly parallel). The baseline is always perpendicular to the master track [33] (actually,
the tracks are always almost parallel). We recognize the perpendicular baseline B⊥ and
parallel baseline B‖, i.e. perpendicular and parallel to the radar ray transmitted towards
the Earth.

Let us emphasize here that radar does not acquire the scenes perpendicular to the Earth
surface — the look angle Θ (the angle between the Earth normal and radar ray) is 16
– 21 ◦ (for ERS-1/2). This allows the images to have better resolution than they would
have in case of perpendicular view (the radar only allows to measure the distance, not the
angle). On the other hand, the incidence angle (Θ + ε) is the angle between the Earth
normal and radar ray at the place where the ray reaches the ground (see figure 2.1). For
ERS, the difference between the angles is approximately 4 degrees.

However, the non-zero look angle of the radar results in most of the energy being scattered
to all directions and only a small portion coming back to the satellite – the amount of
received energy depends largely on the coarseness of the imaged area, e.g. water surfaces
reflect almost no energy back to the satellite (if the water is flat, i.e. without waves) and
therefore are usually imaged in black; on the contrary, corner reflectors such as buildings
or bridges over water are usually imaged brightly.

Earth center

satellite

imaged spot

Θ + ε

Θ

ε

look angle

incidence angle

Figure 2.1: The difference between the look angle and the incidence angle.

The temporal baseline is the temporal difference between acquisitions of the two scenes.

The radar itself acquires raw data, i.e. (sampled) signal in one dimension only (time).
This signal needs to be SAR focused (see section 3.6) in order to generate the SLC data
(single-look complex) which are already two-dimensional (in space). These SLC data are
used for the interferometric processing.
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Another important term is the height ambiguity. As mentioned above, the phase value
is ambiguous, and so is the height of the reflector computed out of the phase. Height
ambiguity is the height difference corresponding to one phase fringe, i.e. 2π radians.
Height ambiguity value will be derived and dealt with in Chapter 4.

Let us also mention the resolution of the image. We can distinguish two directions:
azimuth direction is parallel to the satellite track, while range direction is perpendicular
to it. The resolution of the acquired scene is approx. 4.5 m in the azimuth direction and
20–30 m in the range direction. Due to the radar acquisiton geometry, the resolution in
the range direction changes throughout the image, being better at far range.

Because of the dispropotion between the azimuth and range resolution, the image is often
multilooked, i.e. n azimuth pixels with the same range are averaged to form one. Then,
the resolution becomes approximately the same in both directions. However, multilooking
is not recommended to perform before interferogram creation – usually it is performed at
the end and multilooked images used only for display.

Let us also define that a scene (image) line is a line of the pixels having the same azimuth
coordinate, while the range coordinate changes. On the other hand, if we talk of a pixel
coordinate, we mean the range direction pixel number.

For radar scenes, we need to recognize slant range and ground range. Taking the first
pixel in a line as a reference, the ground range is the distance between the first pixel and
the given pixel measured on the (flat) Earth surface, while the slant range is the difference
between the distance measured to the first pixel and the given pixel from the satellite.

2.2 Steps of Interferometric Processing

Interferometric processing consists of the following steps:

• Image coregistration and filtering: A pixel in one image must accurately correspond
to a pixel in the other image, and also the spectras in both directions must ex-
actly overlap in order to maximize interferogram coherence. Both procedures are
described in Chapter 5.

• Interferogram creation: The phases of the two corresponding scenes are then pixel-
wise subtracted (using complex conjugate multiplication):

I(i, j) = S1(i, j) · S2(i, j)
∗ = |S1| |S2| ej(ϕ1−ϕ2) (2.2)

where I(i, j) is the interferogram phase of the (i, j) pixel and Sk(i, j) is the complex
value of the master (k = 1) or slave (k = 2) scene (pixel (i, j)). Please note that j
in the exponent denotes the imaginary unit.

• Computation and subtraction of the flat-Earth phase: The phase of the received
signal (i.e. the difference between the received and transmitted signal) is largely
dependent on the distance between the transmitter/receiver and the reflector. We
want the interferogram phase to be uniform if the imaged area has no topography.
Before flat-Earth subtraction, the interferogram mostly consists of parallel lines in
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the azimuth direction; after subtraction, the most distinctive feature in the inter-
ferogram is topography. Flat-Earth phase subtraction is described and derived in
Chapter 4.

• Coherence computation: Coherence is a measure for reliability of the phase and is
discussed in detail in Chapter 6.

• Interferogram filtering: In order to reduce interferogram noise, the interferogram is
filtered. This is in particular useful when the interferogram is unwrapped afterwards,
because the noise may significantly reduce the number of residues (for residues, see
Chapter 7). Image filtering is performed using an adaptive algorithm, evaluating
noisiness of each interferogram segment and constructing a different filter for it. For
details, see [12].

• Phase unwrapping: This is a critical step of the interferometric processing. The
ambiguous phase in the 〈−π, π) interval must be converted to an unambiguous
value, which can be of any real value. The procedure and its problems are described
in detail in Chapter 7.

• DEM phase subtraction: In order to eliminate the topographic signal, the phase
corresponding to an external DEM may be subtracted. This DEM needs to be
radarcoded first (i.e. converted to the system of radar; after radarcoding, it looks
like an interferogram without noise and decorrelated areas) and then subtracted.
DEM subtraction is described and derived in Chapter 4.

• Differential interferogram creation: Another way to eliminate the topographic signal
from an interferogram is to use an interferogram which is assumed not to contain
deformation signal (for deformation mapping; this interferogram usually has a short
temporal baseline). The topographic interferogram to be subtracted from the other
one must be first unwrapped and rewrapped to correspond with the other interfer-
ogram (the height ambiguity must be the same). Then, both interferograms are
subtracted. In this thesis, this step is not used and therefore neither described, for
details refer e.g. to [41].

• Geocoding: Transformation of the SAR system (line, pixel, phase) to a geographic
coordinate system (ϕ, λ, Hel) or (ϕ, λ, d) where d is the deformation. In the
GAMMA software, it is performed using an external DEM: a lookup table between
the geographic coordinate system (in which the DEM is defined) and the SAR
system is computed at first. Then, a simulated SAR image (amplitude only) may
be computed from the DEM and coregistered with the real SAR image, making it
possible to correct for orbit errors. However, we found out that the geocoding error
does not account for more than a pixel and due to the type of the terrain and crop
size it often fails, and therefore we only compute the lookup table and then resample
the data using it.

2.3 Applications and requirements

The interferogram (after flat-Earth phase subtraction) contains the following signals:
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• topographic signal: corresponds to the actual height of the ground spot (reflector),

• deformation signal: corresponds to the deformations that occurred between the
acquisition of the two scenes,

• atmospheric signal: corresponds to the delay of the signal caused by its passing
through the atmosphere,

• orbit error influences: the phase changes due to imprecise satellite positions,

• DEM errors: the difference between the real topography in the moment of acqui-
sition and the available DEM to be subtracted; when using the two-pass method,
the error of the coregistration between the interferogram and the DEM must be
considered as well.

Interferometry is often used for DEM creation. In this case, the perpendicular baseline
should be as large as possible, in order to reach a low height ambiguity and therefore a
high height accuracy of the DEM. For ERS-1/2, the upper limit of the spatial baseline is
about 2 km; for such a long spatial baseline, the phase information of the two scenes is
too different to allow coregistration. On the other hand, the temporal baseline should be
as short as possible in order not to allow too much decorrelation and ground deformation.

When used for deformation mapping, the perpendicular baseline should be as short as
possible in order to reduce the topographic signal in the interferogram as much as possible.
Even if the interferogram contains the topographic signal and a DEM must be used in
order to eliminate it, a higher height ambiguity means reduced accuracy requirements for
the DEM. The temporal baseline should be long enough to allow the deformations to occur,
but the deformations can’t be too large. (If the deformation slope exceeds 2.8 cm/px,
phase unwrapping is very unreliable, and large deformations also cause decorrelation,
especially when occuring in the azimuth direction.) An optimal way is to process a larger
set of scenes. There are many “spots” in an interferogram which need to be verified in
other interferograms or by other methods in order to be sure that they are caused by a
deformation. Interferometric stacks also allow to estimate and filter out the atmospheric
contribution; however, the procedure requires the temporal sampling to be dense enough
so that the deformation signal changes only slowly between particular acquisition times.

Other research groups often map deformations after an earthquake; if these earthquakes
occur in a desert, there are no decorrelated areas there and the deformations are large
enough to produce fringes. Detecting landslides is more difficult because the landslides
themselves often cause decorrelations and may not be large enough to be visible in an
interferogram.

It is also possible to determine some properties of the atmosphere using radar interferom-
etry. It has been proven (see e.g. [34, 35]) that weather changes (fronts, storms) cause a
great heterogeneity in the signal delay.

For topographic or deformation mapping, data selection is often performed with the pur-
pose of eliminating these effects, i.e. no rain and snow dates are preferred. If there is
no storm (or similar phenomenon) in the mapped area, the atmospheric influence usually
has a ”long-wave” characteristics, i.e. changes slowly in the area (see e.g. [17]).
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The atmospheric influence (i.e. delay) depends not only on the weather conditions, but,
according to [19], it also depends considerably on the range, i.e. on the look angle.
For an increasing look angle, the path of the ray through the atmosphere gets longer.
The atmospheric delay may reach the value of 15 m but the difference between the two
acquisitions is expected to be lower. This influence is significant if the perpendicular
baseline is very short, or if one acquisition is performed at night and the other during the
day. However, ERS-1/2 satellites are sun-synchronous, and therefore all scenes acquired
at the same track have a very similar acquisition daytime.

Atmospheric influence is dealt with in detail in section 9.4.

Another important feature of the method is that all measurements are relative. Theoreti-
cally, the phase of the differential interferogram should be zero in areas of no deformation,
but there are systematic errors influencing the measurements and therefore the deforma-
tions (or DEM) can be determined only relatively with respect to the surroundings.

2.4 Problems of the Method

The most important problem of the method is decorrelation. All vegetated areas are
decorrelated due to the fact that their surface changes (the movement of leaves etc.) are
comparable to the radar wavelength. The only way to overcome this is to acquire both
scenes simultaneously, such as in the SRTM (Shuttle Radar Topography Mission) mission.

Water surfaces are always decorrelated. The surface moves so quickly that it is impossible
to see it correlated even in the case of simultaneous acquisition of both scenes. In addition,
only a small portion of the transmitted signal is reflected back to the radar.

In our area of interest, which is covered by large open mines, another problem may be
an old DEM. Also, DEMs acquired by different methods may cause a problem because
radar interferometry (C-band) maps the top of forests, in comparison to geodetic methods,
which map the ground.

A little disadvantage of the two-pass method with the use of SRTM DEM is that all
computation are performed in the WGS-84 coordinate system and the heights are related
to the WGS-84 ellipsoid, while the SRTM DEM is related to the geoid. Fortunately, the
difference between the bodies is neglectable in the areas where the geoid-to-ellipsoid offset
is changing only slowly (i.e. causes only a bias).



Chapter 3

Image Acquisition

The acquisition principle of the radar systems is different than that of a usual remote
sensing system. Let us deal only with satellite systems here.

Radar antennas are, in comparison to photography, unable to recognize the angle from
which the signal comes, they only transmit a signal of beamwidth β. The beam should be
as narrow as possible in order to reach a good spatial resolution – however, the narrower
the beam, the (physically) longer antenna is neccessary. For satellites, an optimal antenna
length would be about several hundreds meters, which is impossible to construct (and in
addition, satellite stability could be jeopardized). For antennas being used in satellite
SAR systems, the azimuth resolution would be several kilometres (in the ground range).

Therefore, synthetic aperture radars (SARs) are used to obtain better resolution. The
principle of SAR is using a short antenna and processing the signal in a way allowing to
reach the spatial resolution of a few meters. The requirement for a radar to be used as
a SAR is that it must be coherent, i.e. phases of both the transmitted and the received
signals are stored.

The principle of radar image acquisition consists of emitting pulses of a predefined length
and shape and measuring the echo. The time of reception of the backscattered signal is
given by the distance of the resolution cell, its magnitude is given by the backscattering
properties of the resolution cell.

3.1 Spatial resolution

For SAR systems, we consider resolution in two directions:

• In the azimuth direction, the resolution is determined by the antenna length (aper-
ture).

• In the slant range direction, the resolution is given by the effective pulse length.

The synthetic aperture is (according to [31]) “equal to the distance the satellite travelled
during the integration time” illuminating the given resolution cell; according to [1], it is
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the length of the radar footprint in the azimuth direction. Due to the relativity principle,
both definitions are equivalent.

Pulse repetition frequency (PRF) is limited by the antenna length and satellite velocity.
According to [25], “in SAR, the satellite must not cover more than half of the along-track
antenna length between the emission of successive pulses. For example, a 10-m antenna
should advance only 5 m between pulses, to produce a 5-m-long final elementary resolution
pixel. For a satellite traveling approx. 6 km s−1 over the ground, this implies a PRF of
approx. 1 kHz.”

In comparison to real aperture radars, where the resolution is given by the radar footprint,
the important feature of SAR (see [32]) is that the azimuth and range resolutions are
independent. This is due to the fact that more distant areas are observed longer.

3.2 Phase behaviour

Both the phase and the amplitude, i.e. the entire complex signal, are constructed from
many little reflectors within the given resolution cell (approximately corresponding to a
pixel). That is, reflectors with a better reflectivity have more influence on the resulting
phase (please note that the signal wavelength of 5.6 cm is much smaller than the resolu-
tion cell (approx. 20 m in the range direction)) than less-reflecting objects. Construction
from many small objects may sometimes be an obstacle for interferometry: the phase
is naturally random and if the look angles of the two images differ too much (the par-
allel baseline is too long), i.e. also the incidence angles are different, the phases of the
corresponding pixels are uncomparable and irregular with respect to the image. That is
the reason why the upper limit for the baseline is about 2000 m for ERS-1/2 (derived
e.g. in [25]). That is also the reason why data from different tracks or even different
satellites cannot be combined to produce an interferogram (however, ERS data may be
combined with ENVISAT data but the optimal perpendicular baseline is not zero – for
details, see [10]). Even combining data of the descending and the ascending passes of the
same satellite is not easy; a solution is suggested in [8].

Also, the phase is “stable” and therefore useful only in “stable” areas. The “stability” is
meant in relation to the wavelength – i.e. artificial objects such as buildings and roads
are stable but trees (with moving leaves) are very unstable, except for the winter season
when they have no leaves. The same applies to fields and meadows – these areas are useful
for interferometry only in late autumn and early spring. Also, water or snow bodies are
considered to be “unstable” except for areas of permanent snow or glaciers.

Let us note here that if we take the two images at the same time – as was the case of the
SRTM mission [28], or airborne radars – this problem of stability arises only over water
bodies whose surface changes very quickly. The “fundamental condition for interferome-
try” [25] is

2L(sin θ1 − sin θ2) < λ (3.1)

where L is the ground-range pixel length (approx. 20 m at far range), θ1 and θ2 are the
incidence angles of the two images respectively, λ is the radar wavelength. The difference
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in round trip distance of both ends of a pixel is 2L sin θ and the condition (3.1) means
that the phases of all the small targets within a pixel subtract in a similar way — if the
condition wasn’t satisfied, the targets would add both constructively and destructively and
the resulting phase difference would be random, without any meaning. Let us emphasize
here that θ1 and θ2 are the incidence angles so the quality of the interferogram is also
influenced by the local terrain slope.

Also, according to [25], the ”direction of observation must be identical for the two images”
in the along-track direction. ”The degradation becomes total when the angle between the
two directions of observation exceeds the width of the antenna beam (0.3 o for ERS-1/2).”
This corresponds to ”excessively large difference” between the Doppler centroids of the
two images. Doppler centroid is explained below.

According to [1], let us consider two processes: SAR data acquisition, that is the con-
version from the reality (with the infinitesimal resolution) to the raw data (blurred due
to the SAR principle), and SAR processing, i.e. conversion from the raw data to the
image (with resolutions cells about 20 by 5 meters large). SAR processing is therefore the
inverse process to data acquisition.

3.3 Antenna

Let us have a rectangular antenna with the (azimuth) length of La and (range) width of
Da. The normalized antenna pattern (i.e. the transmitted energy as a function of the
off-center beam angles φr (range) and φa (azimuth)) can be written as (λ is the radar
wavelength)

a(φr, φa) =
sin2

(
Da

λ
φrπ

)
(
Da

λ
φrπ

)2 ·
sin2

(
La

λ
φaπ

)
(
La

λ
φaπ

)2

and a 2-dimensional simplification is shown in figure 3.1.

φ
βr

r

Figure 3.1: 2-dimensional antenna pattern, with βr as the beamwidth

For ERS-1/2, the antenna length is La = 10 m, the antenna width is Da = 1 m [26].
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For simplification, let us consider (as usual) the antenna pattern to be a triangle, having
the slopes where the “real” antenna pattern has a half power (-3 dB) (see the dashed
line in figure 3.1). Now, the beamwidths in the azimuth and range direction are βr =
0.886 λ

Da
= 2.870◦, βa = 0.886 λ

La
= 0.287◦ [26].

The pattern within this angle limit is called the “main lobe”, all the energy transmitted
outside the limits is attributed to “sidelobes.”

According to [17], the beamwidth of the main lobe is slightly broadened in range direction,
“in order to get the power distributed more evenly across the full swath” [26]. In practice,
the beamwidths in range and azimuth direction are [17] βr = 5.4◦ and βa = 0.228◦

respectively. This is inconsistent with beamwidths presented in [26] and [1], where βa =
0.208◦. The inconsistency is probably caused by different consideration of limits (i.e.
“first zero” versus “half power” and possibly by taking Earth rotation into account).

3.4 Range processing

Let us define two time scales: the first one, let us call it ”fast time” [1] and denote τ ,
concerns the range processing. The transmitted pulse is just 37.1µs long and the echo,
although a little longer, contains the information to be separated to pixels in one line in
the range direction. The other time scale, let us call it “slow time” and denote t, concerns
the pulses; the pulses are transmitted with the frequency of PRF = 1680 Hz and the echo
to each pulse generates a distinct line in the azimuth direction.

Because there is a several orders of magnitude difference between these two time scales, we
can consider them to be independent. After range decompression, azimuth decompression
is performed after range migration correction (will be discussed later).

The radar emits pulses of the length τp = 37.1µs with the PRF of 1680 Hz. After
transmitting nine such pulses, first echo is received. According to [1], let us ignore the
fact that the spacecraft moved between the transmission and reception. The swath width
(in ground range) is about 100 km, short enough to enable reception of the whole echo
before transmitting another pulse. Thus, one antenna is used for both transmission and
reception.

The transmitted frequency-modulated pulse can be written as

pt(τ) = g(τ) · exp(−j2πf0τ), (3.2)

where g(τ) is the (complex) envelope, τ is the “fast time” and f0 = 5.3 GHz is the carrier
frequency (corresponding to the radar wavelength λ = 5.6 cm). The envelope could be
a regular rectangle but, in this case, it would be a problem to transmit a great power
within a short pulse; a longer pulse would cause worse resolution. That is why longer
phase-coded pulses are used. Thus the envelope to be modulated is

g(τ) = exp(jπkτ 2) · rect(τk/Bν), (3.3)

where k is the frequency modulation rate (for ERS-1/2, k ≈ 0.42MHz/µs) and Bν is the
range bandwidth (i.e. maximal frequency of the chirp before modulation).
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The rect(x) function is defined in the following way [1]: for |x| < 1
2
, rect(x) = 1; for

|x| = 1
2
, rect(x) = 1

2
; and for |x| > 1

2
, rect(x) = 0.

That means that the frequency of the chirp increases linearly, reaching the maximum of
ν = 15.55 MHz (for ERS-1/2) for τ = τp.

The transmitted signal therefore looks like (omitting the magnitude)

pt(τ) = exp
(
−j(2πf0τ − kτ 2)

)
, (3.4)

its phase is

φ(τ) = 2πf0τ − kτ 2, (3.5)

i.e. in the phase image and further processing, the radar wavelength of 5.6 cm corresponds
to the 4π phase cycle (because the phase is influenced by the round-trip distance).

The received signal (after demodulation and comparison with the transmitted one) has
the form of (omitting the magnitude)

pr(τ) = g(τ − 2R/c) · exp(−j4πR/λ), (3.6)

where R is the range and c is the speed of light. The phase 4πR/λ must be stored before
further processing.

According to [26], “processing of the returned signal involves stripping off the carrier
frequency and performing a correlation with a copy of the transmitted signal”. According
to [17], the stripping off means down-conversion of the signal to the intermediate frequency
of 123 MHz and sampling with the frequency of 18.96 MHz.

The received pulse after matched filtering has the form of [26]

hr(τ) = (τp − |τ |)sin (kτ (τp − |τ |))
kτ (τp − |τ |)

rect

(
τ

τp

)
. (3.7)

For the case of a single scatterer, this function has a sharp maximum at τd corresponding
to the real time delay (phase). According to [26], the first zero of this signal is often taken
as a measure of the time resolution

rτ =
τp
2

(
1−

√
1− 4

Bντp

)
. (3.8)

Now the compression ratio is τp
rτ

and rτ is selected to be rτ ≈ 1
B
≈ 64 ns. This is the

effective pulse length, i.e. the length of a rectangular pulse to achieve the same range
resolution.

The slant range resolution is then 9.68 m (according to [26, 17]) or 8.56 m (according to
[1] where half-power values are considered), corresponding to the ground range of 21.8 m
(at far range) to 29.3 m (at near range) [26].
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For radar data, it is usual for the pixel to be slightly larger than the resolution (i.e. the
pixels overlap a little). This is given by the non-sharp antenna pattern and spectra in
both the azimuth and the range directions.

The resolution is then degraded by weighting the correlation function due to the sidelobes
[26].

3.5 SAR principle

The azimuth beamwidth is βa ≈ 0.287◦, corresponding to approx 4.5km pixels in the
ground range. This is quite a large area, useless for further applications. But, if SAR pro-
cessing/focusing is done, the resolution improves to approx. 5m. The following derivation
comes from [26].

The azimuth direction is the direction of the satellite movement vector ~v. The received
echos are influenced by the Doppler effect, i.e. the frequency of the received signal is
different than the frequency of the transmitted signal. Also, the actual received frequency
depends on the position of the scatterer in the beam. There is always a direction in
which the Doppler shift is zero, called zero-Doppler plane. Unfortunately, due to small
instabilities of the satellite movement, Earth rotation and other effects, this zero-Doppler
plane is not in the center of the beam, i.e. the beam is not exactly perpendicular to the
flight direction (with regard to the ground) – the difference between the perpendicular
direction and the beam center is called a squint angle ψ . The frequency which is received
from the beam center is called the Doppler centroid fDC and is always smaller than the
PRF. It is given by [1]

fDC = −2v

λ
sinψ. (3.9)

The value of the Doppler centroid is computed during SAR processing and can be also
changed during the process which may be useful for SAR interferometry – in the optimal
case, both images have the same Doppler centroid [25]. However, in this case we would
had to order RAW data and convert them to SLC ourserves.

Because the echo of a given scatterer is received within many pulses (all the time while
staying within the radar beamwidth), the SAR processing procedure needs to be done
first, in order to improve the resolution. Although improving range resolution is quite
simple (it is a one-dimensional problem), improving azimuth resolution is more complex,
mainly due to range migration.

Range migration means that the range between the scatterer and the receiver is changing
during acquisition. During acquisition, received data are stored in lines with respect to
the ”fast time” of their reception. That means that a scatterer lies on an approximate
hyperbola (see [1] for a more exact approach or derivation) in the raw data matrix. Also,
the curvature of hyperbolas is dependent on the minimal range of the scatterer (see [1]).
This makes the problem of SAR focusing “two-dimensional and non-separable” [1].

Now, let us derive the achievable azimuth resolution (taken from [26]):
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Figure 3.2: Coordinate system for azimuth resolution derivation. This figure is taken
from [26].

A point X (located on the Earth’s surface) has coordinates of X = RE(sin γ, 0, cos γ) (see
figure 3.2), the satellite has coordinates of P = (RE + h)(0, sin Ωt, cos Ωt), where Ω is the
Earth rotation speed, t is the time and h is the satellite height. Let us define R0 as the
minimal slant range at time 0, R0 = |X − P |t=0. Then

R0 =
√

(RE sin γ)2 + (RE cos γ − (RE + h))2, (3.10)

|X − P | =
√

(RE sin γ)2 + ((RE + h) sin Ωt)2 + (RE cos γ − (RE + h) cos Ωt)2 (3.11)

=
√
R2

0 + 2RE(RE + h) cos γ cos Ωt, (3.12)

|X − P | ≈ R0 +
RE(RE + h) cos γΩ2t2

2R0

(3.13)

for small values of Ωt, corresponding to the small beamwidth. Therefore, the correspond-
ing (two-way) phase of the received signal is [26]

2ϕ(t) ≈ −4πR0

λ
− 2π

λ

RE(RE + h) cos γΩ2t2

R0

, (3.14)

which is equivalent to linear frequency modulation. Frequency variation of

fd =
1

2π

dϕ

dt
≈ −2

λ

RE(RE + h)

R0

cos γΩ2t

gives the half-Doppler-bandwidth for maximum allowed tmax, which is the half-time of
illumination of a ground point.
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The illuminated area on the ground (the synthetic aperture length) is approximately R0βa
and the ground velocity of the beam is v = REΩ cos γ, so the half-time of illumination is

tmax =
1

2

R0βa
REΩ cos γ

, (3.15)

corresponding to the resulting (Doppler) bandwidth of

Bν =
2

λ
βa(RE + h)Ω. (3.16)

Time resolution (according to the above relations) is τa = 1/Bν , and during the time, the
beam moves a ground distance of vτa and the azimuth resolution therefore is

ra =
RE

RE + h
cos γ

λ

2βa
, (3.17)

i.e. approximately 4.5m for ERS-1/2 SAR.

3.6 SAR processing (focusing)

This section is based on [1].

The SAR focusing procedure should “unblur” the raw data, i.e. separate the contributions
from the “real” resolution cells. As already noted, it is approximately an inverse procedure
to the data acquisition. Without SAR focusing, the data would be unusable because of
very large resolution cells.

The first step of SAR focusing is the range decompression, i.e. correlation of the received
signal with the transmitted one (both demodulated), resulting in the delay τ , determining
the pixel to which the phase and magnitude of the received signal are stored.

Second, the Doppler centroid is estimated. It is done by the spectral analysis in the
azimuth direction. According to [1], “since the Doppler centroid frequency varies over
range, estimation is performed at several range positions.”

After that, range migration correction is performed. That means transforming the ap-
proximate hyperbola in which a given scatterer lies (the exact shape of the curve depends,
among others, on the actual range) to a line in the azimuth direction. This means that
the signal needs to be shifted back in the τ direction and, because a single pixel of the
actual data corresponds to many scatterers with different range migration corrections,
this is not a trivial problem and there are at least four approaches to its solution. One
of them is range-Doppler (the others are named in [25]), which first computes the Fourier
transformation of the data in the azimuth direction, separating the data with different
Doppler frequency and therefore with different range. The data are then focused in this
range-Doppler domain (i.e. the range direction is not transformed unlike the azimuth
one). For more details, see e.g. [1].

After range migration correction, azimuth decompression is a one-dimensional problem.
It is done by correlation with the azimuth chirp.



Chapter 4

SAR Geometry

This chapter deals with the geometrical model of SAR interferometry. From now on, we
only deal with the SLC data, i.e. SAR-focused raw data. The relation between the phase
of the SLC data for a particular pixel and its elevation (with regard to a reference body)
or deformation is derived here. All relations include the perpendicular baseline B⊥ or the
parallel baseline B‖, which are defined in Chapter 2.

4.1 Height ambiguity

B

B

R

α

RM

S
θ

M

S

B

α−θ

Figure 4.1: Geometrical model of radar interferometry, M denotes the satellite acquiring
the master scene, S denotes the satellite acquiring the slave scene. The figure is taken
from [21].
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The following derivation of the height ambiguity value and flat-Earth phase is taken from
[21]. The parallel and perpendicular components of baseline can be expressed as (see
figure 4.1)

B‖ = RM −RS = B sin(Θ− α), (4.1)

B⊥ = B cos(Θ− α). (4.2)

Meaning of the symbols used should be clear from figure 4.1. Please note that we only
deal with the plane containing both satellites and the reflector. The phases of a pixel
corresponding to a reflector at the distance RM from the satellite M and at the distance
RS from the satellite S are:

ϕM = −4π

λ
RM + ϕerr,M , (4.3)

ϕS = −4π

λ
RS + ϕerr,S (4.4)

where ϕerr,M and ϕerr,S are phase errors due to e.g. atmospheric delay of the radar signal.
The difference between the phases of the master and slave scenes (interferogram phase)
is therefore

∆ϕ = −4π

λ
(RM−RS)+∆ϕerr = −4π

λ
B sin(Θ−α)+∆ϕerr = ∆ϕE+∆ϕtpg+∆ϕerr, (4.5)

where ∆ϕE is the flat-Earth phase

∆ϕE = −4π

λ
B sin(Θ0 − α), (4.6)

where Θ0 is the look angle for the point on an arbitrary reference surface (this value
changes according to the reference surface), ∆ϕtpg contains the topographic signal and
∆ϕerr contains deformation and atmospheric signals.

According to formula (4.5), the topographic influence can be modeled as

∆ϕtpg = −4π

λ
B (sin(Θ0 + dΘ− α)− sin(Θ0 − α)) ≈ −4π

λ
B⊥dΘ, (4.7)

where Θ = Θ0 + dΘ. Here we consider dΘ to be very small, i.e. sin dΘ ≈ dΘ and
cos dΘ ≈ 1.

The height of a point on the Earth surface (above the reference surface) may be derived
according to figure 4.2.

Assuming the interferogram contains only the topographic signal, i.e. ∆ϕ = ∆ϕtpg, the
value of dΘ is according to formula (4.7)

dΘ = −∆ϕ
λ

4π

1

B⊥
, (4.8)
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Figure 4.2: Height ambiguity derivation

the distance d is (see figure 4.2)

d = RM

√
2
√

1− cos dΘ = 2RM sin
dΘ

2
, (4.9)

and the height h above the reference surface is therefore (see figure 4.2)

h = d sin

(
Θ0 +

dΘ

2
+ ε

)
. (4.10)

With a few substitutions we get (assuming sin2 dΘ
2
≈ 0 and cos dΘ

2
≈ 1)

h = 2RM sin (Θ0 + ε) sin
dΘ

2
, (4.11)

where Θ0 + ε is the incidence angle.

The height ambiguity (i.e. the height difference corresponding to a 2π phase difference)
is, using (4.8) and (4.11) and considering sin dΘ

2
≈ dΘ

2
,

ha = −RM sin (Θ0 + ε)
λ

2

1

B⊥
, (4.12)

which is in accord with, e.g., [17]. However, this is only an approximate value because RM

also changes with the look angle Θ. In addition, please note that the height ambiguity
changes throughout the image: the length of the perpendicular baseline changes, and so
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does the look angle Θ and the distance to the master satellite RM . However, the height
ambiguity is used for data selection and pair comparison, and it is precise enough for
these applications.

4.2 Deformation

We can also derive the error phase ∆ϕerr, used in formula (4.5), which can also include
the deformation signal:

∆ϕerr = ∆ϕatm + ∆ϕdefo + ∆ϕother = ∆ϕ−∆ϕE −∆ϕtpg (4.13)

i.e.

∆ϕdefo = ∆ϕ−∆ϕE −∆ϕtpg −∆ϕatm, (4.14)

where ∆ϕdefo is the phase corresponding to the geophysical deformation that has oc-
cured between the acquisition times of the two scenes, ∆ϕatm is the difference between
atmospheric delays during the two acquisitions, and ∆ϕother is the noise caused by other
causes, see Chapter 9. Due to the fact that we cannot evaluate the last two phases, we
will consider them stochastic (see Chapter 8). The topographic phase is then defined
(using formula (4.11)

∆ϕtpg = −4π

λ

B⊥

RM sin(Θ0 + ε)
h, (4.15)

using the same approximations as in formula (4.12), and the deformation phase relates to
the actual deformation with a simple formula

∆ϕdefo = −4π

λ
D, (4.16)

where D is the deformation in the line of sight.
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Coregistration and Filtering

Two scenes need to be coregistered in order to accurately overlap, pixel by pixel. Ac-
cording to [17], the coherence lowers with the worsening coregistration accuracy, and the
accuracy of a tenth of a pixel is found out to be sufficient.

During spectral filtering, the non-overlapping parts of the spectra of the master and slave
images are eliminated. If there are non-overlapping parts of the spectras, the interferogram
also may be (partially) decorrelated [3].

In other words, the coregistration procedure makes the two scenes exactly overlap in the
spatial dimension, while the filtering procedure makes the two scenes exactly overlap in
the frequency dimension. Both procedures apply to both azimuth and range directions.

5.1 Coregistration

Coregistration has two phases: first, the overlapping (low-order) polynomial is computed,
and then the slave scene is resampled with regard to the polynomial.

The shift between the two scenes is not constant. This is caused by the following factors:

• the orbits need not be exactly parallel, therefore causing one scene to be little rotated
with respect to the other,

• if the scenes were acquired from different SAR centers, the resolution is different for
each scene (the resolution depends on range),

• if the scenes were acquired from different SAR centers, the look angle changes, and
so do effects such as layover and shadow.

However, no rotation angle is enumerated during the coregistration process. The shift
between the two scenes is evaluated as a 2D polynomial. An approximate shift between
the scenes must be known a-priori, either estimated manually from image magnitude,
or from satellite positions during acquisition. Let us call this approximate shift sapra in
the azimuth direction and saprr in the range direction. The required accuracy of the shift
estimation depends on the window inside which the shift is enumerated.
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Then, both scenes are cut into small windows (in the GAMMA software, window size may
be user-adjusted) which should approximately overlap. Then, all windows are oversampled
by a (user-defined) factor (about 16, the precision required is about one tenth of a pixel)
and the correlation function between the windows is computed

C(sa, sr) =

∑
i

∑
j Am(i, j) · As(i− sa, j − sr)√∑

i

∑
j Am(i, j) · Am(i− sa, j − sr)

∑
i

∑
j As(i, j) · As(i− sa, j − sr)

. (5.1)

where i, j are the azimuth and range indices and should cover the window size, As is the
(adjusted) magnitude of the master image and As is the (adjusted) magnitude of the slave
image. The correlation is computed for all possible values of sa and sr, i.e. throughout
the window.

Image magnitudes in each window must be first adjusted: they must have zero mean.
Then, the shift in both direction is evaluated as

{sa, sr} = maxC(sa, sr) (5.2)

The shift is evaluated in each window independently. The number of windows may be
user-adjusted and the windows may overlap, resulting in the shift to be evaluated in a
very dense net of pixels.

Then, the shift is divided by the oversampling factor, in order to exactly correspond to
the pixels, and is referenced to the window center. A polynomial function of a low degree
is used to define the scene shift for each scene point.

Finally, let us note that the described method is computationally inefficcient. In actual
implementations, the shift for each window is evaluated using FFT. However, the result
stays the same.

5.2 Introduction to spectral filtering

Spectral filtering can be written as a multiplication with a window in the spectral domain
[3]

F ′(f) = F (f) ·Q(f), (5.3)

where F (f) is the original scene spectrum (in the range direction), Q(f) is the spectral
filter and F ′(f) is the resulting scene spectrum.

The simplest spectral filter is a rectangular window, defined as

Qrect(f) =

{
1, flow ≤ f ≤ fhigh
0, elsewhere

(5.4)

where flow and fhigh are defined on the basis of spectral overlap of the two scenes (from
one scene, the higher part of the spectra is eliminated, for the other, the lower part of the
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spectra is eliminated. The eliminated parts have the same extent – considering that the
spectra of both original scenes have the same width).

However, this filter causes overshooting in the spectral domain, and therefore it is not
optimal. The following windows are used instead [3]:

• Von Hann window, defined as

QHann(f) =

{
0.5 + 0.5 cos 2πf

fhigh−flow
, flow ≤ f ≤ fhigh

0, elsewhere,
(5.5)

• Hamming window, defined as

QHamming(f) =

{
0.54 + 0.46 cos 2πf

fhigh−flow
, flow ≤ f ≤ fhigh

0, elsewhere,
(5.6)

• or general Hamming window, defined as

QHamming(f) =

{
α+ (1− α) cos 2πf

fhigh−flow
, flow ≤ f ≤ fhigh

0, elsewhere,
(5.7)

where α is a parameter (for ERS data, α = 0.75 is used most frequently).

5.3 Range filtering

The bandwidth in the range direction (i.e. the difference fhigh − flow, below referred to
as range bandwidth) is given by the maximum chirp frequency (see section 3.4), i.e. is
constant for a given platform. However, the spectra of two scenes acquired by the same
platform from the same orbit do not have to exactly overlap.

A difference in the incidence angles of one point during the two acquisition causes that the
received signal has a different phase, resulting in decorrelation. The difference in phase
can be displayed as a spectral shift of one of the scene with regard to the other, if the
FFT (fast Fourier transform) of the scene in the range direction is performed.

The change in the look angle is small, same as the perpendicular baseline. However,
elimination of the non-overlapping parts of the spectra results in a higher coherence of
the image; however, a part of the image information gets lost.

The spectral shift between two scenes may be evaluated as [3]

∆f =
B⊥c

λr0 tan(Θ− α)
, (5.8)

where c is the speed of light, r0 is the (approximate) distance between the scatterer and
one of the satellites, and α is the topographical slope. Please note that if the perpendicular
baseline is so long that the frequency shift is larger than the range bandwidth, the scenes
cannot be coregistered at all.
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5.4 Azimuth filtering

Similarly to the range direction, the scene spectrum in the azimuth direction has an
(approximately) predefined form. The bandwidth is constant (1378 Hz [3]) and it is
centered around the Doppler centroid frequency (see section 3.5).

This is given by the fact that the range of frequencies acquired during the overflight is
approximately constant (depends mostly on the speed of the satellite with regard to the
ground and the beamwidth); however, the direction where the Doppler shift is zero, may
be different (depends on the squint angle, as mentioned in section 3.5).

The spectral shift between two scenes may be caused by a different platform (e.g. ERS-1
for one scene, and ERS-2 for the other) or by satellite maneuvres between the particular
dates of acquisition. In addition, two gyroscopes (out of three) have been broken since
2000 on ERS-2, causing the scenes acquired after to have a value of Doppler centroid
largely different from the scenes acquired before, and therefore the images acquired before
and after could not be processed together to form a single interferogram. (The maximum
allowed Doppler centroid difference is generally believed to be 400 Hz – the bandwidth is
close to 1400 Hz [17].)

As in the range direction, the azimuth spectras of both scenes should exactly overlap in
order to maximize the interferogram coherence (for details about the influence of improper
filtering to coherence, see [3]).



Chapter 6

Statistical Properties of a Resolution
Cell

The resolution cell, i.e. the area from which the scattered signal is transformed into one
image cell, contains many small scatteres. For ERS-1/2 SAR, the resolution cell is about
20-30 m long (in the range direction) and about 4.5 m wide (in the azimuth direction).
Radar wavelength is λ = 5.67 cm, which is much shorter. In addition, the resolution cell
is a little larger than the distance between the neighbouring pixel centers.

The actual phase values of resolution cells are not as important in SAR interferometry
as the phase difference between neighbouring (and more distant) cells. This is the reason
why the frequently used model of uncorrelated observations should not be used [17]. In
addition, some error influences (imprecise satellite position, atmosphere) introduce errors
in the phase – however, the error of the phase differences between neighbouring cells is
much smaller, even negligible.

6.1 Observation as a Gaussian random variable

According to [17], the observation (i.e. pixel value) is a complex (circular) Gaussian
random variable if the following conditions apply:

• none of the scatterers within the resolution cell dominates (i.e. none of the scatterers
reflects more energy back to the SAR than other scatterers),

• the phase of individual scatterers has uniform distribution (which is fulfilled due to
the fact that range resolution is much bigger than radar wavelength),

• the phase of individual scatterers is uncorrelated,

• the amplitude of individual scatterers is uncorrelated.

The probability density function (PDF) of a complex circular Gaussian random variable
y is

37
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pdf(y) =
1

2πσ2
exp

(
−(Re(y))2 + (Im(y))2

2σ2

)
(6.1)

where σ2 = σ2
Re(y) = σ2

Im(y).

Then, it can be derived [17] that the amplitude of the resolution cell has Rayleigh distribu-
tion and the phase has uniform distribution (however, this does not apply to a multilooked
image). This means that the phase of a single image does not contain any information.

For SAR interferometry, the phase difference between two scenes (acquired at different
times or from different places) is more important than the phase value itself. Reference
[36] derives the interferogram phase distribution and the result is

pdf(ϕ1, ϕ2) =
1− γ2

2π

1

1− γ2 cos2(δϕ)

1 +
γ cos(δϕ) arccos (−γ cos(δϕ))√

1− γ2 cos2(δϕ)

 (6.2)

where γ is coherence (described in the following section), ϕ0 = arg(γ) and δϕ = ϕ1−ϕ2−
ϕ0. That means that the interferogram phase probability density function depends only
on the phase difference and coherence, and is centered around the coherence argument.
That means that in comparison to the scene phase, the interferogram phase contains
information, and the reliability of the information depends on image properties, evaluated
as coherence.

6.2 Coherence

Both pixels (of the master and slave scenes) can be considered to be circular Gaussian
signals (y1, y2) and the joint PDF is

pdf(y1, y2) =
1

π2 |Cy|
exp

(
−
[
y∗1 y∗2

]
C−1
y

[
y1

y2

])
(6.3)

where Cy is the complex covariance matrix and |Cy| is its determinant [17] (∗ means
complex conjugation),

Cy = E

{[
y1

y2

] [
y∗1 y∗2

]}
=

 E {|y1|2} γ
√
E{|y1|2}E{|y2|}2

γ∗
√
E{|y1|2}E{|y2|2} E{|y2|2}

 , (6.4)

|Cy| = E{|y1|2}E{|y2|2}(1− |γ|2), (6.5)

where γ is the complex coherence. The phase of γ is equal to the phase difference between
y1 and y2, and therefore the interferogram phase, while its magnitude |γ| is always in the
interval 〈0, 1〉 and corresponds to the stability of the scatterer, i.e. also to the stability
(reliability) of the phase.
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6.3 Practical approach

These formulas require the knowledge of the mean (or expectance) value of the obser-
vation, which is impossible. Regular statistics works with one variable observed many
times. This is not possible in SAR interferometry – due to the SAR principle (described
in Chapter 3) it is impossible to make multiple looks of the same area.

The area is imaged multiple times in order to allow deformation mapping – however,
the temporal decorrelation (changes in the surface) and also the variability of the SAR
center makes it impossible to make these observations comparable from the statistical
point of view. Therefore, the complex covariance matrix and the coherence itself cannot
be evaluated precisely and an approximate method is used, evaluating the dispersion of
the complex signal within the particular cell neighbourhood.

Please note that in the following formula, coregistered scenes are used (i.e. the slave scene
must be resampled first):

γ =
1
N

∑N
i=0M · S∗√

1
N

∑N
i=0M ·M∗ 1

N

∑N
i=0 S · S∗

, (6.6)

where M , S are the complex values of a pixel in the master and slave images and N stands
for the size of the window used for coherence computation. Unfortunately, the coherence
estimation is biased for small number of looks (i.e. small window sizes for the previously-
mentioned approximation) and small coherence values (see e.g. [18]); however, there is
currently no other possibility to estimate the value better. Large estimation windows may
cause coherent areas to get lost.

Thesis [36] now separates the derivation for Gaussian scatterers and for point scatterers.
For Gaussian scatterers, the phase standard deviation may be written as

σ2
δϕ =

∫ π

−π
δ2ϕpdf(δϕ)dδϕ, (6.7)

while for point scatterers, it is

σ∆ϕ,γ =
1√
2N

√
1− γ2

γ
. (6.8)

However, this relation is biased – it applies only for very high coherence values. Please
note that the phase standard deviation for point scatterers is always significantly lower
than for Gaussian scatterers [36].

Reference [36] contains a graph showing the relation between coherence and interferogram
phase standard deviation, where it can be seen that a coherence of 0.3 corresponds to a
phase standard deviation of about 80 degrees (for distributed targets), but using (6.8),
we get a phase standard deviation of about 16 degrees (for point targets).

Point scatterers usually have a high amplitude (i.e. intensity of the received signal) and
are considered to have stable phase behaviour (will be dealt with in Chapter 10).
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Chapter 7

Phase Unwrapping

In SAR interferometry, phase unwrapping is a key problem. It may be omitted only in
special cases, such as deformation mapping in an area where the deformations are small
– on the contrary, it may be difficult to detect them in this case.

On the other hand, phase unwrapping is the process which can produce the largest errors
– their distribution is not normal because the errors may only be multiples of 2π. It is
an ambiguous process and if two key conditions are not fulfilled, the correct solution, i.e.
the one corresponding to reality, is not guaranteed to be found.

7.1 Problem definition

First, let us emphasize that we perform phase unwrapping in a 2D array. Some articles
[6, 7] even mention phase unwrapping in a 3D array (the third dimension is time, using
interferogram stack), but the methodology is not described there.

The problem is that phase is ambiguous: it is always in the (−π, π) interval, independent
on the actual elevation or deformation. Let us call this the wrapped phase (ψ). The actual
(i.e. correct phase, corresponding to the real terrain or deformation) phase is denoted as φ
and the unwrapped phase (i.e. the phase after the unwrapping process) as ϕ (although the
phase refers to an interferogram, not the scene). The unwrapping criterium is therefore

ϕ = arg min
i=M,J=N∑
i=1,j=1

|ϕ(i, j)− φ(i, j)|p , (7.1)

where i and j are the indices of the given array cell, N and M define the size of the array
and the factor p indicates which norm to minimize.

However, criterium (7.1) is impossible to minimize due to the fact that the real phase φ
is usually unknown. Therefore, another approach to the problem should be adopted. Let
us define wrapped and unwrapped phase differences

∆ψ
x (i, j) = ψ(i+ 1, j)− ψ(i, j) + 2kπ, (7.2)
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∆ψ
y (i, j) = ψ(i, j + 1)− ψ(i, j) + 2kπ, (7.3)

∆ϕ
x(i, j) = ϕ(i+ 1, j)− ϕ(i, j), (7.4)

∆ϕ
y (i, j) = ϕ(i, j + 1)− ϕ(i, j), (7.5)

where k is an integer guaranteeing that ∆ψ
x ∈ (−π, π〉 and ∆ψ

y ∈ (−π, π〉. Therefore, we
can use a realizable criterium:

ϕ = arg min
i=M−1,j=N−1∑

i=1,j=1

∣∣∣gx(i, j) (∆ψ
x (i, j)−∆ϕ

x(i, j)
)

+ gy(i, j)
(
∆ψ
y (i, j)−∆ϕ

y (i, j)
)∣∣∣p ,
(7.6)

where gx(i, j) and gy(i, j) are the weights of the appropriate gradients.

However, minimization of such an Lp norm does not guarantee that the phase is un-
wrapped correctly; the norm itself depends on the weights selected. On the other hand,
the fact that the phase is correctly unwrapped cannot be mathematically formulated or
verified.

For topography phase, we expect that when going from one point to another using different
paths, the other point will have the same height in all cases. The same applies to phase,
i.e. if we come back to the starting point, we need to have zero phase change. We require
the unwrapped phase to have this property.

According to [11], this condition means that the following equation applies:

(∆ϕ
x(i, j)−∆ϕ

x(i, j + 1))−
(
∆ϕ
y (i, j)−∆ϕ

y (i+ 1, j)
)

= 0 (7.7)

for i ∈ 〈1,M − 1〉, j ∈ 〈1, N − 1〉.

This condition seems evident but it usually does not apply to the wrapped phase.

On the other hand, if equation (7.7) is fulfilled in all points, the phase unwrapping prob-
lem has a trivial solution. A reference point is selected and the unwrapped phase of a
point is computed using the unwrapped phase of a neighbour and the phase difference,
independently on the selected neighbour (unwrapping path).

In practice, equation (7.7) is based on two conditions:

• the real phase differences do not exceed π,

• the phase array does not contain noise.

In practice, these conditions are typically not fulfilled: the phase differences are large at
steep slopes (in addition, the orientation with regard to SAR must be considered), and
vegetated areas always contain noise.

If the wrapped phase does not fulfill equation (7.7) in all points, phase unwrapping is
ambiguous, i.e. the unwrapped phase depends on the unwrapping path.

According to [11], residue is the point where condition (7.7) is not fulfilled. Its value may
be 2π or −2π – the residue may be either positive or negative (we do not consider the
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theoretical case when it is ±4π). Let us generate branch cuts, connecting the same number
of positive and negative residues. The branch cuts may also connect a residue with the
array boundary (in this case, it is not neccessary for the branch cut to contain the same
number of negative and positive residues; our problem is always spatially limited). If
the unwrapping paths do not cross the branch cut, the unwrapped phase is unambigous.
However, the ambiguity of the problem remains in the selection of the branch cuts.

7.2 Approaches

According to [11], there are two basic approaches to solve the problem:

• path-following algorithms,

• methods that minimize a certain norm.

Both methods may be applied with or without weights, weighing particular phase differ-
ences.

In SAR interferometry, coherence γ = |γc| (6.6) is often used for weighing the particular
phase differences.

There are some differences between path-following and norm-minimizing algorithms:

• While the path-following algorithms consider the properties of the neighbour of a
particular point (i.e. only local properties of the phase array), the norm-minimizing
methods are global, always considering the whole phase array.

• For path-following algorithms, the difference between the wrapped and unwrapped
phase for all points is an integer multiple of 2π. This is not the case for the norm-
minimizing algorithms, and after applying the method, an operation guaranteeing
the fulfillment of this condition must be performed (congruence operation) – the
phase is simply rounded to the closest “permitted” value. However, after that, the
solution is no longer optimal.

7.3 Basic terminology of graph mathematics

Let us consider a network (directed graph) G = (N,E), where N is a set of nodes and
E is a set of directed edges. Flow f is defined in the network, where some nodes are
sources (S(n) > 0), some are sinks (S(n) < 0) and the others are neutral. Each edge
has a positive capacity c(e) and positive weight w(e). The flow must fulfill the following
conditions:

• The capacity of an edge cannot be exceeded: f(e) < c(e) for each e ∈ E.
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• The flow is conserved, i.e.∑
f+(n)−

∑
f−(n) + S(n) = 0 for all n ∈ N, (7.8)

where
∑
f+(n) is the flow coming to the node n (from all edges containing n),∑

f−(n) is the flow leaving the node n (to all edges containing n) and S(n) is the
strength of the source/sink node.

First of all, the sum of source strengths must be equal to the sum of sink strengths. If
not – and this may easily be the case of SAR interferometry – the array borders may be
defined as both sources and sinks.

As a conventional mathematical problem, only one source node and one sink node are
present in the network. The problem of finding the minimal cost flow is then reduced to
finding the shortest way in the graph which is resolved using the Dijkstra’s algorithm;
if the capacities are too low to absorb the required flow, another ”shortest” way in the
graph is looked for for the remaining flow.

However, this is not the case of interferograms. Here, all sources and sinks have a unique
strength (strength of 2 is only a theoretical case) but are distributed within the whole
graph. On the other hand, the capacities are not neccessary to be defined here which
reduces the problem complexity. However, the capacities (when defined) can limit the
maximum flow in each edge of the network – and also allow the limit to be different for
each direction [5] (each phase difference is represented by two directed edges – one in each
direction – because the flow is only allowed to be positive).

The interferometric problem also has one more constraint: the flow must be integer (only
integer multiplies of 2π can be added to each phase difference).

However, as will be explained later, we are looking for a flow with minimum cost. Let us
note here that a solution with the shortest branch-cut length does not need to be optimal
in any way – the branch cut only prevents the unwrapping path to cross it, but the flow
in the corresponding edge may be zero, i.e. the phase difference need not be adjusted.

7.4 The minimum cost flow algorithm

Let us remind that each edge has also a positive weight w(e), and the total cost of the
flow in the network is defined as

C =
∑
e∈E

f(e) · w(e), (7.9)

with both the previously mentioned conditions fulfilled.

The aim of the minimum cost flow algorithm is to minimize C.

The particular steps of the method are not described here and are subject of the graph
mathematics.
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7.5 L1 or L0 norm?

Obviously, the phase differences must be adjusted somewhere in order to get a residue-free
interferogram. Also, the adjustments have to be minimal in some way – and therefore all
adjustments are penalized. However, the question is, should the penalty be proportional
to the adjustment itself?

Let us deal now with the value of p in expression (7.6). For p = 2, the minimization task
corresponds to the classical least-squares problem that can be dealt with efficiently by
non-iterative methods. However, the least-squares solution reduces the number of large
adjustments and causes the adjusted phase differences to be spread throughout the phase
array [5]. The L2 norm is generally viewed as unsuitable for SAR interferometry.

If the penalty is proportional to the phase difference change, we call it minimizing the L1

norm (p = 1) – the total sum

∑
e∈E

|d(e)| · w(e), (7.10)

where d is the adjustment size, is minimized. The advantage of the method is that large
adjustments are largely penalized, and therefore there remains only a small probability
that a phase difference is adjusted largely.

The other approach uses L0 norm, i.e. minimizing the number of adjustments, irrespective
of the size of the adjustments. The expression

∑
e∈E

dthr(e) · w(e) (7.11)

is minimized, where dthr is zero if d = 0 and otherwise it is 1. This criterium is said to be
better (i.e. better corresponding to the reality) for SAR interferometry [11].

In terms of the network (as introduced above), the problem of L1 norm is solved efficiently
by the minimal cost-flow (MCF) algorithm – the weights are constant for this case. How-
ever, the problem of L0 norm requires the weights to be dependent on the actual flow
through the edge, i.e. the problem is highly non-linear and NP-hard (the proof is dis-
closed in [4]). NP-hard problems are problems which are exponentially difficult to solve –
cannot be solved in a polynomial time. However, the cited article suggests an algorithm
finding an approximate solution.

7.6 The method used

Phase unwrapping is performed by the UNWRAP batch which is a part of the GAMMA
software. According to [42], phase unwrapping is performed by the minimum cost flow
method with some adjustments, which are discussed below. Generally, the path-following
algorithms appear to give more reliable results for SAR interferometry.

According to [42], let us consider that a four-pixel cell (used for residue assessment) is a
node. Source nodes are defined as positive residues and sink nodes are defined as negative
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residues. Between two neighbouring nodes, there are two directed edges (because the flow
may be only positive).

The weights are given as the coherence of each pixel, and pixels with a very low coherence
(the threshold is to be user-adjusted) are even excluded from the unwrapping process, i.e.
no node nor edge is created at its place.

Then, the minimum cost flow is found for the given evaluated graph. The edges are
associated with the phase differences between neighbouring pixels, and a non-zero flow
in each edge indicates that the difference should be adjusted by 2kπ, where k is the flow
(may be different that ±1).

Pixels with coherence lower than a predefined threshold are excluded from the unwrap-
ping, and therefore the graph must be adjusted. This is done using Delaunay triangulation
(definition taken from [43]): “the Delaunay triangulation or Delone triangularization for
a set P of points in the plane is the triangulation DT(P) of P such that no point in P is
inside the circumcircle of any triangle in DT(P). Delaunay triangulations maximize the
minimum angle of all the angles of the triangles in the triangulation; they tend to avoid
’sliver’ triangles.”

The triangulation also (according to [42]) doubles the number of edges – causing that the
network is more dense and allows for better localization of residues.

The fact that some pixels are excluded from the unwrapping process may cause some areas
to be separated from the rest of the scene, and therefore introduce large unwrapping errors;
on the other hand, the results are more reliable than if the coherence threshold is set too
low and more incoherent areas are unwrapped.

In addition, large areas with “no phase” may be present in the unwrapped scene. This
depends on the selection of the unwrapping seed (i.e. the pixel where unwrapping starts)
– all the continuous area containing the seed is unwrapped, irrespective of its size.
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Models

8.1 Model definition

Let us denote observations, i.e. the measured interferogram phase for each pixel, as ∆ϕ
and the unknowns, such as elevation, deformations etc. for each pixel, as x. Then the
linear Gauss-Markoff model [17] may be applied as

E {∆ϕ} = A · x, (8.1)

D {∆ϕ} = Q∆ϕ (8.2)

where A is the design matrix and Q∆ϕ is positive-definitive covariance matrix of the
interferogram phases.

Let us emphasize here, that this model applies independently to each pixel of the processed
scene crop and the number of unknowns depends on the task formulation.

In order to solve the model, the number of unknowns must be equal or smaller than the
number of observations. Then, the most probable vector of unknowns and its covariance
matrix may be evaluated as

x̂ = (ATQ−1
∆ϕA)−1ATQ−1

∆ϕ∆ϕ, (8.3)

Qx̂ = (ATQ−1
∆ϕA)−1. (8.4)

The model may be used in several variations: the observations may or may not include the
flat-Earth phase or topographic signal. In addition, the phase is due to the complex nature
of the received signal known only modulo 2π which makes the problem more complex and
nonlinear.

The unknowns include the topographic height, geophysical deformation, atmospheric de-
lay during the acquisition of both scenes, and the integer ambiguity number (possible
unwrapping error).

However, as equations (8.1) and (8.2) apply for each interferogram pixel, the number of
unknows is always larger than the number of observations. Ramon Hanssen in [17] cites
three strategies for the problem solution:

47



48 CHAPTER 8. MODELS

• more observations can be added to the model,

• apriori information can be introduced,

• the model can be reformulated.

In the radar interferometry, the only possibility to add more observations to the model
is to use more scenes, corresponding to a larger number of overflights, generating new
deformations, new atmospheric delays, and new phase unwrapping ambiguities. Due to
the processing method, it is also impossible to acquire two scenes of the same area during
an overflight. Therefore, the number of unknowns is larger too – the only improvement
may be seen in the topography signal, which stays all the same.

Introducing apriori information means e.g. using known topographic height of each pixel
for subtracting the phase corresponding to the height (or neglecting the topography phase
due to a flat terrain or small perpendicular baseline). Or, the processed area can be
assumed to be geophysically stable, therefore no deformations are expected, or the phase
unwrapping can be assumed to be perfect.

Reformulating the model means e.g. neglecting some parameters and transferring them
into the stochastic part of the model (this is often the case of the atmospheric delay).

8.2 Interferometric stacks for deformation monitor-

ing

Let us overview the interferometric stacks. There are N scenes of the same area and
a DEM is available, obtained from a different source. Let us assume that the phase
unwrapping was performed perfectly, i.e. the unwrapped phase corresponds to the reality.
In addition, let us neglect the atmospheric delay and orbit error influence which may
appear as the phase trend in some of the interferograms.

All N(N − 1) interferograms are created, i.e. each scene is combined with each other.
However, some interferograms may be omitted due to a low coherence and some points
in some interferograms may be omitted in the consistency check step (see Chapter 13),
causing the number of observations to be different for each interferogram pixel.

The observations are the phases of each interferogram, with the flat-Earth and DEM
phase subtracted. However, both processes use only orbit information of the master scene
and baseline information, so they are deterministic and do not influence the stochastic
part of the model). The phase to be adjusted is also unwrapped and unwrapping errors
should be found and corrected before the adjustment itself (or are corrected iteratively),
so unwrapping errors are not considered in the basic adjustment model.

In the literature dealing with interferometric stacks, there are basically two models for
deformation adjustments:

• deformation model, where the deformations in the times of acquisitions are searched
for,
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• velocity model, where the velocities between individual times of acquisition are
searched for.

Properties of both approaches are discussed in the following sections.

8.3 Pseudoinverse

Pseudoinverse is a method for inverting a non-regular matrix. For a regular matrix, the
result of pseudoinverse is the same as the result of inverse.

If a system of equations

A · x = b, (8.5)

is to be solved, the solution for regular A is

x = A−1b. (8.6)

However, A is not always regular. The system of equations may be

• overdetermined, i.e. there are more equations than unknowns, the exact solu-
tion generally does not exist; the problem is then reformulated by minimizing the
quadratic norm of b− Ax and formula (8.3) is used for computation of x;

• underdetermined, i.e. there are more unknowns than equations, and the system of
equation has an infinite number of solutions. In this case, pseudoinverse is com-
puted by the Singular Value Decomposition (SVD) technique (in MATLAB) and
the solution with minimal quadratic norm of x is selected. Unfortunately, the SVD
technique does not allow weighting the values of x.

However, the case of InSAR often brings problems, that are both overdetermined and
underdetermined. If there is a scene within the set that is contained in no interferogram,
or if the interferograms divide the set of scenes into more subsets, there are many inter-
ferograms to determine the main set (i.e. that one containing the reference scene) and
also to determine the other sets, but there is no information to interconnect these subsets
– in this view, the system of equations is underdetermined. This is the problem often
encountered in the deformation model (see the next chapter).

8.4 Deformation model

Here, the unknowns are defined as deformations Φ in each acquisition time ti where i is
the scene number (with regard to one of the scenes where the deformations are assumed to
be zero). An auxiliary matrix Aaux has N columns (one for each scene) and M rows (one
for each existing interferogram for a particular pixel) and contains -1 if the corresponding
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scene is the master of the interferogram, and 1 if it is the slave (please note that Aaux
may be different for each pixel). Then, the design matrix A may be written as

A =
4π

λ
· Aaux. (8.7)

Before the processing itself, matrix A needs to be regularized, which may be performed
by eliminating the column corresponding to a reference (master) scene (selected before
processing), in which acquisition time the deformations are considered to be zero. How-
ever, it may happen that during the consistency check step (described in Chapter 13) all
interferograms containing the reference scene are excluded (for a point) – in this case, no
adjustment can be performed.

This deformation model (used in [37]) does not need any assumptions of the deformation
linearity in time. In addition, it does not assess DEM errors but these may be added to
the model (see section 8.8). Atmospheric influence is said [37] to be partially eliminated
in the adjustment; however, we suppose that the atmospheric influence is not eliminated
at all and it is a part of the results – if the deformations are attributed to individual
acquisition times, so are the atmospheric delays. Partial elimination is possible only if
the deformation curves are then low-pass filtered.

Due to a large number and structure of unknows, there may be a problem of the regularity
of the matrix ATA. During the interferogram consistency check steps, some interferograms
may be excluded from the adjustment, causing that some columns of the A matrix may
be empty or there are more independent sets of scenes, which are not interconnected by
any interferogram. In both of these cases, the matrix ATA is singular and there are two
ways of solving it:

• excluding the empty columns from the matrix A, eventually separating the indepen-
dent sets of interferograms into more matrices and independent adjusting; however,
some elements of the vector ∆ϕ are missing in the case of exclusion and the indepen-
dent sets of vector Φ, computed by separate adjustments, cannot be interconnected
in any way without a priori information (e.g. from neighbouring pixels or by tem-
poral interpolation).

• using the pseudoinverse (described in section 8.3). A disadvantage of this method
is that the results may be inconsistent with the physical reality (due to the mini-
mization as described in section 8.3), as noted in [2], where the pseudoinverse with
the changing-velocity model (see section 8.7) is recommended. The deformations
in the separated sets that do not contain the reference scene are minimized in the
deformation model – without respect to the other deformations, causing large jumps
in the deformations.

8.5 Constant-velocity model

The constant-velocity model assumes that the deformations are linear in time, respectively
the deformations may be represented by an explicit function of which the parameters are
searched for.
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Here, there is only one unknown (independently for each processed point): the deformation
velocity v.

Let us define vector dt = Aaux · t (the auxiliary matrix Aaux is the same as for the
deformation model) where t is the vector of acquisition times (in days, e.g.). The vector
dt therefore contains temporal baselines of each interferogram.

The constant-velocity model can be expressed in the following way:

∆ϕ =
4π

λ
dt · v + δϕ, (8.8)

where δϕ is again the phase noise to be minimized by the least-squares adjustment.

If expression (8.8) is rewritten to the matrix notation, the design matrix has the form of

A =
4π

λ
· dt. (8.9)

A great advantage of this model is that there is only one unknown (if the velocity is
also expressed by few parameters, there are more, but significantly less than for the
deformation model) and therefore there are no problems with singularity. However, the
problem is that the parametric expression of the deformations may be unknown in advance
and that the assumption of constant velocity need not be always satisfied.

This model is used in the Permanent Scatterers technique, overviewed in chapter 10.

8.6 Seasonal-velocity model

Article [22] mentions the way to model seasonal influences within the constant-velocity
model (as described in the previous section). This is performed by adding two parameters
and the constant velocity is substituted by

v = v0 + vA sin
2π

T
(t− t0) = v0 + vA1 sin

2π

T
t+ vA2 sin

2π

T
t, (8.10)

where v0 is the constant (i.e. season-independent) velocity component, vA is the amplitude
factor of the velocity, T is the season length (usually one year), t is the time of acquisition,
t0 is the temporal shift of the seasonal influence. Please note that in the first part of the
equations, unknowns are v0, vA and t0 – the second part of the equations serves for the
computations (it is linear in unknowns) and the unknowns are v0, vA1 and vA2 here.
The adjustment is similar to the velocity model except for the fact that the number of
unknowns is higher.

8.7 Changing-velocity model

This model is described in [2] in detail and its number of unknowns is the same as
for the deformation model. It is not the deformation velocity to be looked for, but the
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deformations themselves – however, the velocity nature allows for avoiding some problems
of the deformation model and preserving the physical meaning of the results at the same
time.

One of the main disadvantages of the deformation model is that the interferogram set may
be separated into two or more subsets – which are interconnected by no scene. In this
case, the deformation modeling leads into situation where ATA is singular, and therefore
irreversible.

Article [2] suggests to do it another way. ATA is singular, but its inversion to the rank
(which is the number of scenes used) may be obtained by pseudoinverse (see section 8.3).
However, it notes that results obtained by this technique do not always correspond to the
physical reality, being minimal in a wrong way.

They suggest to estimate velocities – velocities different for each time interval between
two acquisitions. Now, the formulation of the design matrix A is not as trivial as in
previous cases,

vi =
Φi − Φi−1

ti − ti−1

(8.11)

with Φ0 = 0 and t0 = 0 (we select the reference scene as the first one in time, although it
is not the optimal solution with regard to the standard deviations), and therefore

∆ϕj =
j∑
i=1

vi(ti − ti−1) + δϕ (8.12)

for all time intervals considered (depends on the master and slave scenes for the particular
interferogram). Therefore, design matrix A then contains time intervals ti − ti−1 in the
appropriate places (velocities vi are to be estimated).

Now, the minimum-norm of the pseudoinverse (see section 8.3) is not applied to the
deformations, but to the velocities (which are not contained in the subset containing the
reference scene), and the deformations (obtained after integration of the velocities) do not
contain large discontinuities [2]. That also means that the model formulation is different
from that defined by (8.14), i.e. not the deformation residues are to be minimized, but
the velocity residues. The deformations (together with their standard deviations) are
computed after adjustment itself by integration, and that means the standard deviation
grows up when reaching further and further away from the reference scene. The SVD
technique (used for pseudoinverse) also provides no weights, so that a unique covariance
matrix is used.

In practice, let us imagine that design matrix A is block-diagonal, i.e. all scenes are
processed into interferograms, but there are separate sets of them. Then, the system of
equations is both overdetermined (if the number of interferograms is high enough) and
underdetermined – there are few scenes which cannot be determined in any way (one
for each of the block; minus the reference one). Let us imagine that each block will be
adjusted separately with its own reference scene – and the results of each block will be
shifted (together with its reference scene) to give the minimum quadratic norm.

However, the minimum norm is applied to the velocities, not to the deformations them-
selves: i.e. if a velocity cannot be determined by the adjustment, it is said to be as small
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as possible to fulfill the other conditions. That means that the deformations which cannot
be determined by the adjustment will “get lost” among the other ones.

A disadvantage of this method is that due to the integral nature of the deformations, the
standard deviation of the last deformation is significantly worse than those of the first
deformations (in time).

Article [2] suggests to correct the data first for the DEM error and atmospheric influence,
then perform phase unwrapping again and then the adjustment. However, this is not
the way we do that, and the atmospheric delay stays in the interferograms which may
negatively influence the “minimal” velocities. In other words, if the deformations were
discontinuous in time (and continuous in space), we would say that this is caused by
atmospheric delay. However, if some deformations are estimated on the basis of velocities,
they may be significantly influenced by atmospheric delays during the other passes.

8.8 DEM error estimation

Another unknown, often estimated within the model, is the DEM error, i.e. the difference
between the external DEM used for topography subtraction and the DEM contained in the
interferograms. The principle is that topography contained in an interferogram depends
strongly on its perpendicular baseline – and therefore the DEM error is transferred into
each interferogram with a different (known) factor.

The number of degrees of freedom (i.e. the difference between the number of measurements
and the number of unknowns) is usually high enough to allow one more unknown (though
different for each pixel).

The equations only get one more parameter (and the design matrix therefore gets one
more column)

δ∆ϕ =
4π

λ

B

r sin Θ
·∆z, (8.13)

where δ∆ϕ stands for the interferogram phase (or its residue) change due to the DEM
error, B is the perpendicular baseline (please note that it is not different only for each
interferogram, but also for each pixel, it changes in both azimuth and range directions),
Θ is the look angle and r is the distance between the master satellite and the scattering
object (both changing slightly in the range direction), and ∆z is the DEM error to be
estimated.

It may seem that for small baselines (100-200 m), the DEM error should not significantly
influence the interferometric phase; however, it is worth subtraction [2] – the precision of
the estimated deformations is getting better.

8.9 Adjustment with phase unwrapping errors

However, phase unwrapping cannot be considered perfect at all in our case, where the
interferograms are mostly incoherent and separate patches are processed – this fact is also
confirmed by our experience. The general adjustment may be then formulated as
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x̂ = arg min rTQ−1r, (8.14)

where r is the vector of adjustment residues

r = u− A · x̂, (8.15)

(each of the previously defined models can be substituted), Q is the covariance matrix (to
be dealt with in the following section), and x is the vector of unknowns (also, all of the
previously defined models can be substituted). Variables withˆare the estimations of the
unknowns.

Here, u are the ”correct” phase values, therefore

u = ∆ϕ+ 2kπ, (8.16)

where k are integer unwrapping errors.

In addition, the following relations must be fulfilled [36, 37]:

∆ϕAB + ∆ϕBA = 0, (8.17)

∆ϕAB + ∆ϕCA + ∆ϕBC = 0, (8.18)

where the first index applies to the master scene and the other to the slave scene and
∆ϕ may be either the original phase (without flat-Earth subtraction), or the (whatever
subtracted) phase referenced to a certain point, or the unwrapped phase referenced to the
certain point.

These formulas may be rewritten in matrix form as

C · u = 0, (8.19)

where C is known (all interferograms doubles and triples are contained).

The problem therefore has measurements l, parameters Q, C, A and unknowns x, k.

As a whole, the minimization problem may be rewritten from (8.14) to

x̂, k̂ = arg min(l + 2kπ − Ax)TQ−1(l + 2kπ − Ax) (8.20)

with

C · (l + 2k̂π) = 0. (8.21)

However, as it looks as a simple minimization problem with a condition, it is not. It is
caused by the fact that the k vector must be integer. If it did not have to, the problem
would be easy to solve and ambiguous. However, the requirement for integer k makes the
problem nonlinear, directly unsolvable [22], and neccessary to be solved iteratively, with
the danger of getting stuck in a local minima.
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A theoretically easy approach would be to try out all possible k vectors (the number
of them is only countable and only small values of k (less than about 50) come into
consideration. However, with the number of interferograms about 100, this gets 100101

different k vectors, for which the adjustment must be performed – and all this for each
pixel of the crop!

Article [22] suggests to use the LAMBDA method (designed for GPS) for ambiguity res-
olution for Permanent Scatterers processing (described in Chapter 10). As Permanent
Scatterers (PS) processing has many features common with stack interferometric process-
ing, it is not the same. They advice not to search the space of unknowns, but to search
the space of unwrapping ambiguities/errors, which is guaranteed to give an exact solution
if the whole space has been searched [22].

However, the authors admit that in some conditions, the search can take a very long time
and they limit it to a certain number of iterations, which may cause that an acceptable
solution is not found. Please note that in the case of ambiguity resolution (for InSAR), no
approximate solution should be accepted – due to the fact that the one-point difference
(due to the integer nature of the ambiguities) makes a difference of 2.8 cm in deformations.

Our approach also uses search in the ambiguity space and is described in detail in section
13.7.

8.10 Stochastic part of the model

8.10.1 Phase accuracy

The inaccuracies influencing image acquisition and interferometric processing are de-
scribed in Chapter 9. Chapter 6 describes how an approximate measure of phase reliability
(standard deviation) may be obtained from image properties.

As mentioned in [14, 16], the interferogram phase value itself does not have a significant
meaning due to the fact that the atmospheric delay may account for even five phase cycles.
On the other hand, the atmospheric delay is expected to be continuous in space, i.e. the
difference between two cells in an interferogram is expected to contain the significant
information.

With respect to it, the interferogram phase to be adjusted is referenced to a certain
point (the point is recommended to be stable and required to be coherent in as many
interferograms as possible; for other details, see section 13.4).

However, if an interferogram phase has a standard deviation of σ∆ϕ (e.g. evaluated using
formula (6.8)), the standard deviation of the referenced interferogram phase is then

σ∆ϕ,γ,ref =
√

2σ∆ϕ (8.22)

assuming that the point to be referenced and the stable point both have the same phase
accuracy. Usually, this is not the case but for simplicity, let us use this formula.

Using formula (6.8), for coherence 0.3, we get interferogram phase standard deviation of
25.8◦. As described in Chapter 6, this estimation is biased, and therefore the true standard



56 CHAPTER 8. MODELS

deviation is even higher. Let us note here that this accuracy measure is attributed only
to coherence, reso. decorrelation.

Therefore, applying formula (8.22), we get that the referenced phase standard deviation
is 36.4◦ at maximum (resp. its part attributed to decorrelation).

8.10.2 Covariance matrix

Let us assume that the observations, i.e. the phases of the scenes, are independent (this
is not absolutely true because the resolution cells partially overlap and all points are
referenced to a single one). Then, the covariance matrices for the unknowns may be
expressed (for all models) using formula (8.4).

The adjustment is performed independently for each point of the scene, and therefore the
scene phases are really independent within this adjustment.

However, the problem is not as trivial as it may seem. This is due to the fact that the
”observations”, i.e. the phase of the scenes, which are independent, are not known accu-
rately enough (see Chapter 6), and are therefore the unknowns. For the real observations,
i.e. the interferogram phases, the accuracy may be evaluated (see Chapter 6), however,
their independence is questionable (although the scene phase has a uniform distribution)
due to the fact that various interferograms may contain one scene in common.

References [36, 37, 2] do not consider different interferogram phase variances at all, the
covariance matrix is unitary. We first tried to construct the covariance matrix in such
way that it corresponds to the accuracy of particular interferograms (for each point), but
finally we decided to use the unitary matrix too. The reasons are following:

• standard deviation of an interferogram phase, computed by (6.8), takes in account
only the coherence, i.e. the rate of decorrelation;

• as discussed in this chapter, unwrapping errors cannot be involved in the covariance
matrix at all due to the fact they are unknown before adjustment;

• as will be discussed later, the referencing errors are also significant;

• Kolmogorov-Smirnov test (described in section 13.9) tests if the adjustment residues
are normally distributed and does not take into account their weights.



Chapter 9

Error Influences in SAR
Interferometry

According to Chapter 2, the following factors may influence the accuracy of SAR inter-
ferometry results:

• during acquisition:

– thermal noise,

– decorrelation (i.e. a change in acquistion conditions),

– atmospheric delay,

– satellite clock instability,

• during processing:

– satellite position errors,

– DEM errors,

– errors in phase unwrapping.

The influence of individual factors will be dealt with in the following text.

9.1 Satellite position errors

Satellite position is a very important factor for radar interferometry precision. Even a
few-centimeter error may cause the interferogram phase to be errorneous by more than a
radian.

Satellite position is computed during flight, and this information is contained in the
received radar data. However, this position may be errorneous by few meters in each
direction. In addition, satellite position is computed by ESA and by DEOS [27] later,
using the later-acquired data, and the resulting satellite positions are much more accurate
than those of the real-time systems. However, these positions are available several months
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after the date of acquisition and are not available for all the period of satellite life, usually
due to some problems onboard.

The methods to achieve satellite positions are in detail discussed in [41], including their
accuracy. Let us only recapitulate here that the position error may be split into radial,
across-track and along-track component, the radial standard deviation is about 5–6 cm
for precise orbits, across-track standard deviation is about 15 cm for precise orbits, and
the along-track error is not available, but it is known to be the highest. The along-track
error may be substituted by timing errors [40] – on the other hand, usually it does not
influence the data so significantly as noticed in the cited article (the large timing error
was probably caused by an improper SAR processing in that case).

Although the particular satellite orbit errors have a random character, they influence the
interferogram as a whole, so the errors may be estimated and corrected if large enough.
The method is described in [25], and although criticized in [17], it is correct, as derived in
[41]. The errors appear as fringes throughout the interferogram, the smaller the errors, the
smaller fringe frequency. The correction is possible only for large errors (not for precise
orbits) because a small fringe frequency is impossible to manually estimate. Phase trend
in interferograms may also be estimated computatively by a sophisticated method – this
is used in the PS processing (as described in Chapter 10).

The orbit errors influence the interferogram in two processing steps:

• during flat-Earth phase subtraction, where the residual phase may be expressed as
(as derived in [41])

d(∆ϕE) =
4π

λ
(dBh sin Θ− dBv cos Θ) , (9.1)

where dBh and dBv are the orbit errors in the horizontal and vertical directions
respectively (see figure 9.1);

• and during topography subtraction, where the residual phase is expressed as (derived
in [41])

d(∆ϕtpg) =
4π

λ

1

sin(Θ + ε)RM

(dBh cos Θh+ dBv sin Θh) , (9.2)

where h is the elevation.

Both equations (9.1) and (9.2) contain a sinus or cosinus of the look angle Θ, which is
different for different range — meaning that the residual phase is slowly changing in the
range direction. The fringes may also appear in the azimuth direction – this is caused
by a change in the orbit error during the scene acquisition and the number of azimuth
fringes is usually far lower due to the fact that the orbit errors are considered not to
change quickly.

As mentioned in Chapter 2, the topography phase may be also subtracted by the 3-pass
method: this is discussed in detail in [41] and [40] and will not be discussed here.
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Figure 9.1: Baseline representation: M is the master satellite, S is the slave satellite, Bh

is the horizontal component of the baseline B, and Bv is its vertical component. In this
case, the parallel baseline B‖ is zero and perpendicular baseline B⊥ = B (due to the fact
that look angle Θ is the same as the orientation angle α)

.

9.2 DEM errors

The effect of the DEM errors is also derived in [41] and has the following character:

d(∆ϕDEM) =
4π

λ

1

sin(Θ + ε)RM

B⊥dh, (9.3)

where dh is the DEM error for a particular interferogram pixel. The DEM errors vary
for each interferogram pixel and cannot be a priori estimated. Their estimation may be
contained in the adjustment process (see section 8.8).

9.3 Phase unwrapping errors

Phase unwrapping errors are probably the biggest problem in InSAR applications. The
phase unwrapping process is ambiguous in incoherent areas or due to the radar geometry
deformations, such as foreshortening or layover, and a ”correct” (i.e. corresponding to
reality) estimation of the phase ambiguity is not easy, often even not possible.

The complexity of the phase unwrapping process grows with the number of fringes in
the interferogram – therefore it is more difficult to unwrap an interferogram containing
the topographic signal, than an interferogram with the topography already subtracted.
We unwrap the interferograms without topography, but the phase unwrapping errors also
occur and they are very large in some cases.
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The phase unwrapping errors are the only which do not have the normal distribution
– their value is ±2kπ, where k is an integer. Although they cannot be estimated dur-
ing the unwrapping process itself, they can be estimated during postprocessing, if more
interferograms are available (see Chapter 13).

9.4 Atmosphere

SAR processing uses the vacuum speed of light for derivation of phase ϕ using the two-way
travel time, which contains a bias due to the non-vacuum atmosphere. However, this is
not the problem due to the differential basis of InSAR. On the other hand, atmospheric
properties (humidity, pressure etc.) may be different during the two acquisitions, causing
a nontrivial phase bias of the interferogram.

The two atmospheric layers where the most significant atmospheric delay may originate
are

• ionosphere (the uppest atmospheric layer), due to a different electron density (de-
pendent on the local hour, latitude, solar activiy and geomagnetic conditions of the
ionosphere [34], all of which factors change very slowly in the spatial dimension).
The inospheric delay is dependent on the frequency of the signal – and was observed
up to 2.8 cm for the C-band radar (which is carried by ERS-1/2) [15]. The signal
extension is mostly larger than 30 km [15], allowing for low-pass spatial filtering of
the inospheric contribution. The other problematic layer is

• troposphere (first 50 km from the ground, where the refractive index depends on lo-
cal temperature, humidity and pressure [34]). The cloud-forming processes proceed
in this layer, causing the delay to be spatially variable [15]. However, the variability
is expected to be (at least partially) correlated with the topographic height [15].
The correlation is a theme of a current diploma thesis.

The tropospheric delay therefore is expected to be correlated with the topographic height
and may be partially estimated (and corrected) within the DEM error. The ionospheric
delay is compensated for by the procedure of referencing the phase with respect to a
certain pixel. Article [2] recommends to extract the atmospheric contribution by low-pass
filtering in the spatial dimension and high-pass filtering in the temporal dimension (with
the purpose of distinguishing the deformation – however, the temporal sampling of the
data with respect to the deformation rate must be dense enough for this method).

9.5 Satellite clock instability

Satellite clock instability may cause the following:

• the error in PRF (see section 3.5),

• the error in range decompression (see section 3.4),
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• errorneous orbits (see section 9.1).

It is impossible to correct for the clock instability, and therefore the satellites are designed
to have the clock instability as small as possible. However, I was unable to find the
designed clock instability frequency for ERS-1/2.

9.6 Error budget

Let us suppose here that both atmospheric and orbit influence are stable within the
interferogram crop, i.e. that the values of the influence change only slowly, or not at
all. Then, the phase value itself does not contain the required information, but a phase
difference between two cells does [14]. That is why all interferograms are referenced to a
certain point (see section 13.4).

According to relation (6.8), an approximate standard deviation of the interferogram phase
may be evaluated using coherence. However, the standard deviation evaluated using this
relation does not contain the influence of imprecise orbits and DEM errors. In addition,
the limited use of the relation (6.8) is described in section 6.3.

On the other hand, atmospheric delay influences the received phase in the same way
as the Earth-crust deformations: both are given only by the acquisition dates. This is
different in comparison to e.g. DEM error, which influences the phase with regard to
the perpendicular baseline. Therefore, we decided not to separate the deformations and
atmospheric delay during adjustment, hoping that the atmospheric influence will not be
significant due to the small area processed. In addition, small atmospheric disturabnces
may be (high-pass) filtered in the deformation development graph.
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Chapter 10

Permanent Scatterers

Permanent Scatterers, or Persistent Scatters, etc. is a relatively new method of deforma-
tion monitoring with SAR interferometry technique.

In comparison to classical interferometric processing, this method makes use of point
reflectors, i.e. not Gaussian scatterers, as described in section 6.1. The phase of the point
reflectors does not depend so much on the incidence angle, and therefore the maximum
allowed perpendicular baseline is much larger (about 1 km), which allows to make use of
many more scenes (tens or even hundreds).

A detailed description of the basics of the method (during time, the method has been
successively improved) can be found in [9] which is also source of the following short
review.

The possibility to use many scenes, together with the point nature of the reflectors, allows
to reach much better accuracy than for the classical InSAR processing, even deformations
in the range of milimeters. However, complex knowledge of statistics and signal processing
is required.

The basic requirement of the method is that the processed area contains enough perma-
nent scatterers. The point scatterers are usually quite dense in urban areas, while quite
rare in agricultural areas, and almost none in forested areas. They can be formed by
buildings, bridges etc. A density of about 100 permanent scatteres per km2 is required
[9].

The number of permanent scatterers may be also increased using artificial reflectors placed
to the investigated site. However, this is expensive and requires a special processing [24].

In addition to deformation mapping, the method also allows to evaluate DEM error in
each point – the principle is similar to that described in section 8.8.

10.1 Processing steps

1. First, permanent scatterer candidates (PSc) are found in the scene. Magnitude
dispersion within all scenes is computed for each scene pixel. If this dispersion is
smaller than a threshold, the pixel is declared to be a PSc.
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However, the magnitude of each scene must be first radiometrically corrected in
order to be comparable. The calibration factor κ may be found in [23].

2. A master scene is selected and the interferograms are computed (i.e. the number of
interferograms is n− 1 if n is the number of scenes).

3. The flat-Earth phase and the topographic phase are subtracted from the interfero-
grams (the DEM used for topographic subtraction need not be very accurate).

4. The phase difference of each point may be written as [9]

∆ϕ = a+ px · x+ py · y +B⊥ · z + T · v + e, (10.1)

where a is a constant (for an interferogram), x, y are SAR coordinates (azimuth and
range), B⊥ is the perpendicular baseline (for an interferogram; computed separately
for each point for higher accuracy), T is the temporal baseline (for an interferogram)
and e is the noise. The rest of parameters are unknowns: px, py define the phase
plane which represents atmospheric delay and orbit errors (assumed to be small
enough to be represented by a plane; i.e. suitable only for small crops), z is the
DEM error to be estimated and v is the deformation velocity (also to be estimated;
assumed to be constant over time).

Four unknowns for each point is too many to be estimated; however, the px and py
unknowns are constant within an interferogram, and z and v are constant for each
point within the stack.

The problem is then viewed in two ways:

• the x-y plane within each interferogram (spatial dimension), which needs to be
estimated, and

• the B⊥-T plane within the stack (baseline-temporal dimension), which needs to
be estimated too. This requires both B⊥ and T to be approximately uniformly
distributed (the solution may diverge otherwise [9]).

The problem would be linear and easy to solve, if ϕ was the unwrapped phase, which
is not the case.

5. Using a periodogram, a, px and py are estimated for each interferogram.

6. The data are compensated for the estimated parameters.

7. Using a periodogram, z and v are estimated for each PSc.

8. The data are compensated for the estimated parameters.

9. Some points may be eliminated or added to the set of PSc on the basis of their
phase stability.

10. Continue iteratively with point 5, if the changes of z and v were not small enough.

The detailed description of the algorithm may be found in [9], appendix A.
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10.2 Properties of the method

Let us summarize here the advantages and disadvantages of the method:

• Point scatterers with the required density need to be in the processed area.

• Only constant velocity component is estimated (however, other articles describe
improvements of this method with regard to deformations non-linear in time. The
best situation is when a deformation model is available to be proved).

• A large number of scenes is required, with the perpendicular and temporal baselines
to be distributed as uniformly as possible.

• The accuracy of the estimated parameters, i.e. DEM error and deformation veloc-
ity, is very good (few milimeters), but the parameters are estimated only for the
permanent scatterers (they are usually interpolated for other points).

This method is being used abroad for deformation mapping; however, our department
does not have software for it yet. We plan to use it in the future.
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Practical processing and results
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Chapter 11

Data and Area Description

11.1 Data

The data used for processing were acquired by ERS-1 and ERS-2 satellites during 1996-
2000. The data were acquired at track 394, frame 2583 and then divided into two (inde-
pendent) stacks, in order to reduce the perpendicular baseline to less than 300 m. Table
11.1 displays the data used.

Some data were excluded due to the fact that none of the interferograms created from
this scene were coherent. These data are not mentioned in table 11.1.

11.2 Orbit precision

As orbit information, the ”Delft precise orbits” were used [27]. However, at some periods,
mostly due to an operational error of some satellite instrument, the orbits cannot be
computed with such an accuracy to be called ”precise” (radial precision in the radial
direction should be 5-6 cm and about 15 cm in the across-track direction) – they are
called ”fast-delivery and their precision is about 2 cm worse in the radial direction and
about 6 cm worse in the across-track direction [27].

For most of the scenes, precise orbit information was obtained; however, for orbits 43468
and 25933, only fast-delivery orbits were available.

For orbit 40963, no precise or fast-delivery orbits were found, and therefore less precise
orbits, delivered within the data (i.e. computed during the acquisition) were used, which
causes phase trend in the range direction in all intereferograms created using this scene
[41]. However, we finally decided to use this scene – we hope the crops are small enough
for the influence to be small.

However, it seems that a significant orbit inaccuracy is involved in scene 25432 – not
only that the crops contain fringes (even the crops are very small and therefore should
not), but also the DEM (in the DEM subtraction process) is localized imprecisely, making
the scene 25432 unusable as the master scene. We decided to exclude all interferograms
containing this scene – the fringes in these interferograms are very clear.

69
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Orbit satellite date perp. bas.

23428 ERS-1 1996-01-07 0
3755 ERS-2 1996-01-08 -69
24430 ERS-1 1996-03-17 77
4757 ERS-2 1996-03-18 100
25432 ERS-1 1996-05-26 -329
5759 ERS-2 1996-05-27 -433
25933 ERS-1 1996-06-30 6
9266 ERS-2 1997-01-27 26
9767 ERS-2 1997-03-03 -275
10268 ERS-2 1997-04-07 254
11771 ERS-2 1997-07-21 -249
12773 ERS-2 1997-09-29 -266
14777 ERS-2 1998-02-16 -206
15278 ERS-2 1998-03-23 -214
15779 ERS-2 1998-04-27 91
16280 ERS-2 1998-06-01 155
17282 ERS-2 1998-08-10 -258
40963 ERS-1 1999-05-16 107
23294 ERS-2 1999-10-04 -213
23795 ERS-2 1999-11-08 -209
43468 ERS-1 1999-11-07 -49
26300 ERS-2 2000-05-01 -262
28304 ERS-2 2000-09-18 130
29306 ERS-2 2000-11-27 171

Table 11.1: Data. Boldface denotes the master scene, with regard to which the perpen-
dicular baselines are related. The perpendicular baselines are only approximate.

11.3 The area

The area to be investigated is the Norhern-Bohemian brown-coal basin. The basin is quite
large (about 1420 km2), its length is more than 80 km. The coal deposits themselves take
up about 850 km2 and their thickness is about 30 m, at some places even 60 m [38].

The coal has been mined in the basin since the 15th century using different techniques:
at first, using “selské dobýváńı” which contains many potential hazards, then deeply and
now through open-pit mines. The deeps mines are mostly situated in the central part
of the basin (the coal is deposited deeper) and in the areas which make open-pit mining
impossible.

According to [38], the most endangered part of the basin due to landslides is the area
around the city Teplice, because this area was to be mined again, and therefore the
reclamation was not performed here.

Open-pit mining is more effective than deep mining, allowing to mine about 95 % of
the deposit. On the other hand, it significantly disturbs the countryside: the reclaimed
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areas may be unstable – however, their utilization is designed with respect to this factor.
Unfortunately, sometimes it is neccessary to build a road or similar object on a waste
dump – and in this case, the subsidences are significant, mainly in the first years after
construction.

Deep mining was at first performed in areas near Úst́ı n. Labem, where the Labe River
allowed to transport the coal away early in the history. Here, the deeps mines are less
deep than in the Most area, and therefore the area endangered by subsidences should be
smaller. However, the mining companies are responsible to make the area stable with the
new deep mines – therefore, no observations with regard to deformations are performed
and no areas are known to subside due to deep mines.

The Northern-Bohemian coal basin passess continuously into the Ore Mountains, and on
the divide and in the Ore Mountains, there is a lot of ore mines. Also other raw materials
such as clays or calcite, are being mined in the area. However, the deformations are not
monitored here and no area is known to subside.

A detailed list of deep and open-pit mines, same as the other mines, is out of scope of
this thesis and can be found in [39].

11.4 Crops

There are two crops processed within this thesis. One is a road built up on a waste dump,
created as a by-product of the mining activities. This is the famous Ervěnice corridor, a
road, railway and pipeline between the Komořany viallage and Jirkov town. The other is
the village Košt’any (near Teplice) and its neighbourhood (unfortunately, the coherence is
bad in the neighbourhood), which may be partially undermined (in history) and which is
close to a former open-pit mine (now flooded, Barbora lake, to the north and to the west
from the village). In addition, the village is surrounded by waste dump transported out of
the mine on the northern edge – however, the areas of the waste dump are mostly reclaimed
and therefore are not expected to be coherent. The road from Košt’any to Mstǐsov is also
built on the waste dump – however, the road leads through a forest and therefore is not
recognized in the image. The western part of the village (cemetery) is situated almost on
the bank of the Barbora lake and is known to slide down – unfortunately, neither this area
is coherent. The village lies out of the coal area; however, it contains a small separate coal
bed. The centre of the village is expected to be stable [20]. In the area, also landslides
can be expected (according to Geofond, [20]), but mostly in the flooded mines and also
to the north-east from the village (out of the intown area).

Both areas known to subside; however, up-to-date, we have no information of the subsi-
dence velocity.

Tables 11.2 and 11.3 show the geographic dates about these crops.

The Ervěnice corridor is known to subside – it is a road, railway and a pipe built on a
waste dump in 1983. The corridor is surrounded by open-pit mines, and therefore can be
easily recognized in the coherence map, see e.g. figure 13.1. The expected deformations
are about 10–20 cm/year here, and are irregular.

The center of the village Košt’any is situated about 1 km from the Barbora lake, black
area e.g. in figure 12.8. The Barbora lake is a former open-pit mine. The waste dump
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north west south east unw. seed

SAR (az.) [pix] 17600 18200 18200 17600 464
SAR (range) [pix] 2150 2150 1900 1900 49
WGS-84 (ϕ) [◦] 50.529252 50.508405 50.498317 50.519163 50.505016
WGS-84 (λ) [◦] 13.475404 13.467872 13.537865 13.545430 13.525712
S-JTSK (Y) [m] 802487 803361 798617 797743 799359
S-JTSK (X) [m] 984772 986985 988832 986619 987968

Table 11.2: Borders of the Ervěnice crop. The SAR coordinates are specified with regard
to scene 23428. The SAR coordinates of the unwrapping seed are with regard to the crop.

north west south east unw. seed

SAR (az.) [pix] 12950 13540 13540 12950 191
SAR (range) [pix] 1370 1370 1270 1270 68
WGS-84 (ϕ) [◦] 50.658732 50.641373 50.637119 50.654477 50.650759
WGS-84 (λ) [◦] 13.757805 13.751411 13.780595 13.787000 13.764477
S-JTSK (Y) [m] 780593 781320 779346 778619 780254
S-JTSK (X) [m] 973465 975310 976077 974232 974411

Table 11.3: Borders of the Košt’any crop. The SAR coordinates are specified with regard
to scene 23428. The SAR coordinates of the unwrapping seed are with regard to the crop.

mined was transported and deposited at the north-eastern part of the Košt’any village and
the road to the Mstǐsov village is built on the waste dump, and therefore is also expected
to subside.

The area may also be partially undermined; however, the deep mines are old and the area
is not expected to subside anymore.



Chapter 12

Data Analysis

12.1 The relation between coherence and baseline

Overall coherence is computed as the mean coherence of the crop, excluding pixels with
coherence 0 (these are not processed). All interferograms were processed into this analysis,
not only those selected for postprocessing.

We know that the overall coherence is not a measure of the interferogram quality – and
that the coherence of the area of interest should be measured instead – however, the
overall coherence may be used as a measure for comparison of various interferograms.
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Figure 12.1: The relation between the temporal baseline and coherence (a) and between
the perpendicular baseline (absolute) and coherence (b) for the Košt’any area. All points
in the crop were processed into this graphs, not only the points selected for further
processing.

Please note that the points in the graphs appear in pairs – these are two interferograms
created from the same two scenes, only master and slave are interchanged. The differ-
ence in coherence is not very clear and is usually very low (except for the tandem pair
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Figure 12.2: The relation between the temporal baseline and coherence (a) and between
the perpendicular baseline (absolute) and coherence (b) for the Ervěnice area. All points
in the crop were processed into this graphs, not only the points selected for further
processing.

25432 and 5759, where a large orbit error is suspected for 25432 (also other facts sup-
port this suspection, such as fringes in interferograms made from it, different look of the
interferogram after DEM subtraction etc.).

12.2 Phase sums in cycles

Theoretically, phase sum in cycles should be zero according to equations (8.17) and (8.18).
This applies for the interferogram phases (after complex-conjugate multiplication), for the
flattened interferogram phases, and also for DEM-subtracted phases. If a constant error
is present, it is eliminated by referencing the phase to a selected point (as described in
section 13.4).

However, the sums in cycles are never exactly zero. Also, for the processing method,
where scenes are resampled in advance and then complex-conjugated multiplicated with
each other, even the decorrelation is not the cause of the non-zero phase sums. Possible
causes for non-zero sums in interferogram doubles are following:

• inappropriate referencing (i.e. the phase of the reference point has a bad value); the
other influences are almost negligible;

• phase filtering in decorrelated areas – the phase may change significantly during
filtering if the neighbouring pixels have significantly different values – the difference
may be caused by filtering rules with respect to the master magnitude;

• an error in the phase of the reference point – its phase may be influenced by phase
filtering; in this case, the sum is non-zero, but constant;
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Figure 12.3: Histogram of the phase sum standard deviation σcyc,i,intf for interferogram
doubles (a) and triples (b) for the Ervěnice area.
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Figure 12.4: Overall histogram of m computed using (12.3) for the Ervěnice area. Please
note that the zeros correspond to interferograms excluded due to a low coherence value
of the reference pixel.

• processing noise, i.e. rounding errors, which are not expected to be significant.

For interferogram triples, the following causes may apply in addition:

• orbit error influence, as described in section 9.1 – each interferogram in the triple
has different parallel baseline;
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Figure 12.5: Histogram of the phase sum standard deviation σcyc,i,intf for interferogram
doubles (a) and triples (b) for the Košt’any area.
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Figure 12.6: Overall histogram of m computed using (12.3) for the Košt’any area.

• DEM error influence, as described in section 9.2 – each interferogram in the triple
has different perpendicular baseline.

Both of these influences apply for both the processed and reference points.

None of these errors (except for the processing noise) causes decorrelation in a single
interferogram.
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During processing, the phase sums are tested pixelwise – in order to decide whether an
interferogram/point is to be excluded from the processing or not. Here, we make an
overall analysis of the data with the purpose to exclude hugely errorneous interferograms
or just to get an information about the phase accuracy.

12.2.1 Analysis

Let us note first that this analysis is performed only for interferograms selected for pro-
cessing, but for all points in the interferogram (the selection procedure is described in
section 13.2.

For each interferogram double or triple (cycle), the phase sum is computed on the pixel-by
pixel basis. All interferograms are referenced to a selected point before actual summing.
Then the phase sum standard deviation is computed

σ∑∆ϕ =

√∑N
i=1(

∑
∆ϕ)2

i

N
, (12.1)

where N is the number of points in the interferograms and
∑

∆ϕ stands for the phase
sum in a cycle. Let us note here that the correct value of the phase sum is known to be
zero.

However, the information about a high or small phase sum standard deviation in a phase
sum is kind of inapplicable – we would rather get an information about a quality of a
particular interferogram. We decided to transfer the standard deviation information to
the interferogram set using the following procedure:

• First, the phase sum STD are ”distributed” into all interferograms involved in the
particular cycle:

c = |C| · σcyc,i,intf√
n

(12.2)

separately for each line of C, yielding a line of c. C is the matrix of phase cycles,
see equation (8.19)), n is the number of interferograms in the particular cycle.

• Then, the phase STD are averaged for each interferogram (STD from different phase
cycles are averaged):

m =

∑
C · |c|∑ |c|

, (12.3)

now computed separately for each column of C, c.

This analysis can also be used for the estimation of the phase error to be used for statistical
tests after adjustment (see section 13.9). We estimate it as

σ∆ϕapr =

√∑
m2

n
(12.4)
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where n is the number of interferograms. For the Ervěnice area, σ∆ϕapr = 0.65 rad
(37◦), for the Košt’any area, σ∆ϕapr = 0.51 rad. These values were computed only using
the points selected for further processing (see section 13.2). These values are computed
from all interferograms except for those preliminarily excluded due to orbit errors (i.e.
interferograms containing scene 25432). Individual interferogram exclusion, as described
in section 13.4.3, was performed after these computations, gaining σ∆ϕapr = 0.53 rad for
the Ervěnice area and 0.47 rad for the Košt’any area.

However, to evaluate the final phase standard deviation for an interferogram, we must
quadratically sum this value with the standard deviation caused by decorrelation (0.64
rad using (6.8), and therefore we use 0.83 rad for the Ervěnice area, and 0.82 rad for
the Košt’any area. These are final values computed after exclusion of individual interfer-
ograms (see section 13.4.3). Please note that these numbers are different for the wrapped
and unwrapped interferograms due to the fact that different interferograms were selected
(different thresholds) and different interferograms were excluded. Details can be found in
section 13.4.3.

12.3 Preliminary estimation of the DEM error

The DEM error, as mentioned in section 8.8, is estimated preliminarily from eight tandem
interferograms, which are included in the dataset. We assume that the one-day temporal
baseline did not allow the deformations to occur or the deformations were negligible.

Because there are four tandem pairs in the dataset, eight interferograms were created out
of them. Their (wrapped) phase is presented in figures 12.7 and 12.8. It can be seen that
the interferograms are similar in pairs (except for the 25432 – 5759 and 5759 – 25432 pair
which is discussed below). However, the difference between the particular doubles can be
attributed to the DEM errors.

In accordance with section 12.2, where the reasons for non-zero phase sums in interfero-
gram doubles are described, and due to the fact that tandem interferograms are mostly
coherent (see figures 12.7 and 12.8), the phase referenced to a certain point is expected to
be close to zero. The referencing errors are expected to apply here only insignificantly, the
observed phase of the reference pixel should be opposite in both interferograms and the
reference pixel is selected to be very coherent. The only error influence expected here may
be the DEM error (deformations are excluded by the assumption of the short temporal
baseline).

Obviously, there is a problem with interferogram 25432 – 5759. This problem is similar
to all interferograms which have 25432 as master, and due to the fact that a hole can be
seen in the interferogram, similar to other interferograms, which originates from the step
of DEM-phase subtraction, we assume that orbits of 25432 have a large error. The scene
25432 was excluded from the following processing.

Due to the fact that some of the interferograms were unable to be unwrapped with the
seed selected for the whole set, a different seed was located for the analysis – as the most
coherent point within the Ervěnice corridor (coordinates 340 (line), 70 (pixel) within the
crop). The most coherent point for the Košt’any crop is 439 (line), 16 (pixel).
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23428 – 3755 3755 – 23428 24430 – 4757 4757 – 24430

25432 – 5759 5759 – 25432 43468 – 23795 23795 – 43468

Figure 12.7: Tandem interferograms of the Ervěnice crop: the first orbit corresponds to
the master image, the second one to the slave image. Please note the obvious difference
between 25432 – 5759 and 5759 – 25432. All points of the Ervěnice crop are imaged here,
the points to be processed are filtered later. The phase scale is imaged in figure 12.9.

Tables 12.1 and 12.2 contain the mean of the referenced phase within the pixels selected
for processing (as selected during the process described in Chapter 13.2). Please note that
a large value here may be caused by several factors, such as decorrelation (however, in
this case the pair sum is near zero), orbit errors (if the orbit error difference within each
pair is large, the pair sum is also large) or atmosphere delay trend (no influence on the
phase sum). Scene 25432 has a very large orbit error (also indicated in figures 12.7 and
12.8 where interferograms 25432 – 5759 and 5759 – 25432 are significantly different). For
interferogram pair 23428 – 3755 and 3755 – 23428, the large values are probably caused
by decorrelation with higher probability of unwrapping errors.

12.3.1 Resampling interferograms from different track

In order to increase the number of tandem interferograms available for DEM error estima-
tion, another two tandem pairs were used which were acquired on a neighbouring track.
The area of interest is in the overlapping area. Some details about the data are contained
in table 12.3.

The area to be cropped from these scenes was obtained through geocoding of the inter-
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23428 – 3755 3755 – 23428 24430 – 4757 4757 – 24430

25432 – 5759 5759 – 25432 43468 – 23795 23795 – 43468

Figure 12.8: Tandem interferograms of the Košt’any crop: the first orbit corresponds to
the master image, the second one to the slave image. Please note the obvious difference
between 25432 – 5759 and 5759 – 25432. All points of the Košt’any crop are imaged here,
the points to be processed are filtered later. The phase scale is imaged in figure 12.9.
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Figure 12.9: Colorscale for the wrapped phase. −π on the left, π on the right.

interferogram phase mean [rad] interferogram phase mean [rad] sum [rad]

23428 – 3755 -3.8459 3755 – 23428 4.3570 0.5111
24430 – 4757 0.1640 4757 – 24430 -0.1531 0.0109
25432 – 5759 6.5836 5759 – 25432 -2.0963 4.4873
43468 – 23795 0.1578 23795 – 43468 -0.1176 0.0402
24659 – 4986 -0.7509 4986 – 24659 1.3325 0.5816
25160 – 5487 -0.5014 5487 – 25160 0.5333 0.0319

Table 12.1: Unwrapped and referenced (to a single point) phase mean of each of the
processed interferograms for the Ervěnice crop. The mean is computed only within the
points selected for further processing.

ferograms from the regular track (394) and estimating the SAR coordinates using the
coord to sarpix script – however, this script works only approximately, not using any
height information, and the results are therefore approximate too. The coordinates used
for cropping (using the SLC copy script) are given in tables 12.4 and 12.5.

The interferograms created from the scenes described in table 12.3 are shown in figures
12.10 and 12.11. As in the previous analysis, four interferograms were created, alternating
the master and slave images for each pair.

24659 – 4986 4986 – 24659 25160 – 5487 5487 – 25160

Figure 12.10: The (non-unwrapped) phase of the tandem interferograms from track 122
for the Ervěnice crop. The colorscale is the same as in other cases and is shown in figure
12.9. Please note that the image scale is different from the original track interferograms
(here the crop was 600 lines by 250 pixels), for the new track it is 612 lines by 285 pixels
(see table 12.4).

Then, the interferograms (possibly together with their coherence maps) are geocoded (us-
ing the geocode back script). The result is an interferogram in the WGS-84 coordinates
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interferogram phase mean [rad] interferogram phase mean [rad] sum [rad]

23428 – 3755 -45.1023 3755 – 23428 42.9522 -2.1501
24430 – 4757 0.3685 4757 – 24430 -0.3475 0.0210
25432 – 5759 42.9522 5759 – 25432 11.9333 54.8855
43468 – 23795 0.2871 23795 – 43468 0.0343 0.3214
24659 – 4986 0.8337 4986 – 24659 -0.7836 0.0501
25160 – 5487 -0.0173 5487 – 25160 -0.3529 -0.3702

Table 12.2: Unwrapped and referenced (to a single point) phase mean of each of the
processed interferograms for the Košt’any crop. The mean is computed only within the
points selected for further processing.

orbit date satellite

24659 1996-04-02 ERS-1
4986 1996-04-03 ERS-2

25160 1996-05-07 ERS-1
5487 1996-05-08 ERS-2

Table 12.3: Basic data of the four scenes to form two tandem interferograms from track
122.

and the borders and the size of the area should be similar to those generated by geocoding
of the original track interferograms. However, the area is not exactly the same, probably
due to the approximity of the initial SAR coordinates, as described above. The exact
borders and scale of the area may be found in the parameter file of the DEM crop.

If both geocoded areas are not exactly the same, the geocoded interferograms (and co-
herence maps) have to be adapted in order to exactly correspond to the geocoded area of
the original track interferograms. This is performed in MATLAB, manually by adding or
removing some lines or pixels.

Then, the original track lookup table (generated during the geocoding process) should be
inversed, using the gc map inverse script. If both the desired width and height of the
resulting data are specified, the resulting lookup table fits it – this is the case when the
width and height of the original track interferogram is used. If the height is unspecified,
the resulting data are much larger – containing all possible pixels within the large area
of the geocoded data. Then, the interferograms (possibly together with their coherence
maps) are geocoded (using the geocode back script). The result is an interferogram in
the WGS-84 coordinates and the borders and the size of the area should be similar to
those generated by geocoding of the original track interferograms. However, the area is
not exactly the same, probably due to the approximity of the initial SAR coordinates, as
described above. The exact borders and scale of the area may be found in the parameter
file of the DEM crop.

Then, the resampling of the geocoded data from the new track is performed, using the
geocode back script and the lookup table from the original track data. Also here, both
the width and height of the original track data must be specified in order to obtain the
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master scene min range max range min azimuth max azimuth width height

24659 4513 4798 20318 20930 285 612
25160 4457 4742 20272 20883 285 612

Table 12.4: Coordinates of the cropped Ervěnice area from the scenes acquired on track
122. Scene 4986 was resampled on scene 24659 and scene 5487 was resampled on 25160,
so the coordinates of the other two scenes are similar.

master scene min range max range min azimuth max azimuth width height

24659 3779 3894 15701 16206 115 505
25160 3724 3839 15655 16160 115 505

Table 12.5: Coordinates of the cropped Košt’any area from the scenes acquired on track
122. Scene 4986 was resampled on scene 24659 and scene 5487 was resampled on 5487,
so the coordinates of the other two scenes are similar.

desired scale of the data.

During all resampling steps (geocode back), the nearest-neighbor method was selected
(default).

The interferograms resampled to the original track are shown in figures 12.12 and 12.13.

Phase unwrapping should be performed at the end, in order to ensure the same unwrap-
ping seed as in the original track interferograms.

12.3.2 DEM error estimation – theory

Table 12.6 lists the approximate values of the perpendicular baseline for particular scene
pairs.

Ervěnice Košt’any
interferogram B⊥min [m] B⊥max [m] B⊥ [m]

23428 – 3755 -72.40 -72.21 -72.09
24430 – 4757 21.76 21.92 22.33
25432 – 5759 -105.00 -104.74 -105.58
43468 – 23795 -165.64 -165.30 -165.74
24659 – 4986 -82.46 -82.29 -84.42
25160 – 5487 -101.50 -101.25 -105.03

Table 12.6: Minimum and maximum perpendicular baseline for the interferograms (de-
pends both on the azimuth and range coordinates). For the remaining interferograms,
the perpendicular baseline is the negative value of the “opposite” interferogram. The
Košt’any crop is so small that the GAMMA base perp script only gives one value.

DEM error estimation is based on formula (9.3). This formula may be significantly simpli-
fied if only interferograms from one track are used; however, in our case, the only constant
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24659 – 4986 4986 – 24659 25160 – 5487 5487 – 25160

Figure 12.11: The (non-unwrapped) phase of the tandem interferograms from track 122
for the Košt’any crop. The colorscale is the same as in other cases and is shown in figure
12.9. Please note that the scale is different from the original track interferograms (here
the crop was 500 lines by 100 pixels), for the new track it is 505 lines by 115 pixels (see
table 12.5).

to be eliminated is the expression cgen = 4π
λ
dh.

Formula (9.3) may be rewritten as

d(∆ϕDEM) = cgenctrB⊥, (12.5)

where coefficient cgen is the same for all interferograms and coefficient ctr depends on the
track. The residual phase d(∆ϕDEM) stands here for the interferogram phase.

Due to the non-zero phase sums for the interferogram doubles, which we attribute to
small errors in the orbits (or baseline), we use the average of both interferograms. For
the DEM error estimation within one of the tandem interferogram double, we may write

∆ϕA−B = cB⊥,A−B + ∆ϕerr,A−B, (12.6)

∆ϕB−A = −cB⊥,A−B + ∆ϕerr,B−A, (12.7)

where ∆ϕerr,A−B is the errorneous phase of the interferogram (A is the master scene, B
is the slave one), attributed to orbit errors and atmosphere, and c = cgen · ctr (simplified
for an interferogram double).

One may say that the atmospheric influence is contained in the interferograms and this
contribution is large enough to prevent any adjustment. However, the most of the atmo-
spheric influence was eliminated by referencing the interferograms to a single point, and
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24659 – 4986 4986 – 24659 25160 – 5487 5487 – 25160

Figure 12.12: The (non-unwrapped) phase of the tandem interferograms from track 122
(Ervěnice area), resampled to the interferograms from track 394. The colorscale is the
same as in other cases and is shown in figure 12.9.

the rest (small enough to allow adjustment) is contained in the adjustment residues. This
only requires the area to be small enough.

Therefore, the first estimate (within one double of the tandem interferograms) of the
DEM-error influenced phase is

∆ϕA−B −∆ϕB−A
2

=
∆ϕerr,A−B −∆ϕerr,B−A

2
+ cB⊥,A−B, (12.8)

that means

∆ϕA−B = cB⊥,A−B =
∆ϕA−B −∆ϕB−A

2
(12.9)

due to the unknown values of the errorneous phase (and expected zero mean).

Now, the twelve tandem interferograms may be compressed into six. Then, an adjustment
model may be written as (considering cgen as the unknown due to the DEM error dh it
contains)

∆ϕ =
4π

λ
dhB⊥tr + e, (12.10)

where ∆ϕ is the vector of interferogram phases for all four interferograms given by (12.9),
B⊥tr = ctrB⊥ for each interferogram and e is the vector of residues to be minimized.
Then,

cgen = (BT
⊥trB⊥tr)

−1BT
⊥tr∆ϕ. (12.11)

12.3.3 Precision analysis

During the following analysis, we will try to neglect as many factors and differences as
possible. Table 12.7 shows several imaging parameters for one of the scenes for each track.
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24659 – 4986 4986 – 24659 25160 – 5487 5487 – 25160

Figure 12.13: The (non-unwrapped) phase of the tandem interferograms from track 122
(Košt’any area), resampled to the interferograms from track 394. The colorscale is the
same as in other cases and is shown in figure 12.9.

Table 12.7 shows that there is a very significant difference between the coefficients ctr for
each track – about an order higher than is the difference between the coefficients computed
for close and far ranges within one track. On the other hand, the ctr factor may stay the
same when estimating DEM error only from one-track data - even if the scenes are shifted
with regard to each other by even a hundred of pixels in the range direction (we found
at most about 80 pixels), generating a phase difference of about 0.005 rad (0.3 degree)
for DEM error of 10 m and perpendicular baseline of 100 m. In that case, the difference
between close and far range may be neglected – it will be contained in the estimated dh
factor.

However, we enumerated that the DEM error estimation from two-track data cannot be
so simple due to the fact that the phase difference is about 0.1 rad (6 degrees) for a pair
with perpendicular baseline of 100 m and DEM error of 10 m. On the other hand, we
decided to neglect the difference between the close and far ranges – it will be contained in
the estimated dh factor (the difference between particular tracks in the last row of table
12.7 is negligible).

We therefore decided to compute the ctr coefficients for each interferogram (represented
by its master scene) individually, but we will use the same value for all pixels of the crop,
setting dh not to be the DEM error exactly, but containing also the influence of the range.

Another factor, which is to analyze, is the variability of perpendicular baseline B⊥ which is
also significantly dependent on the range. The maximum and minimum baselines for each
interferogram can be found in table 12.6. If a baseline does not change even by a meter
within an interferogram, it means that the influence on the phase is about 0.0005 rad which
is negligible in comparison to other error influences. Therefore, we will also compute the
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track (orbit) 394 (24430) 122 (25160)
close range far range close range far range

range pixel 1900 2150 4457 4742
range RM [m] 849003 850970 869310 871555

SAR to Earth center [m] 7157103 7157083
look angle Θ [deg] 19.9112 20.1659 22.9203 23.1331

Earth-center angle ε [deg] 2.6069 2.6417 3.0488 3.0838
incidence angle Θ + ε [deg] 22.5181 22.8076 25.9691 26.2169

1
sin(Θ+ε)RM

[m−1] 3.0720e-6 3.0315e-6 2.6270e-6 2.5972e-6
4π
λ

1
sin(Θ+ε)RM

[m−2] 6.8084e-4 6.7187e-4 5.8223e-4 5.7562e-4

close/far rate (previous line) 1.013 1.011

Table 12.7: Various imaging parameters for one scene of each track. Precise ranges were
found in the parameter file for the scene (.slc.par), look angles were enumerated using the
base perp script. The remaining parameters were computed by hand. All parameters
refer to the Ervěnice crop. Similar values can be computed for the Košt’any crop, where
no such analysis has been performed.

perpendicular baseline for the crop center and use this value as a perpendicular baseline
for all pixels of the crop.

Tables 12.8 and 12.9 list the important parameters for each interferogram (with regard
to the central point of the master crop).

scene Θ [deg] B⊥ [m] range [m] ε [deg] 4π
λ
ctr [m−2] 4π

λ
B⊥tr [m−1]

23428 20.0435 -72.30 850084 2.6235 6.7652e-4 -0.04891
3755 20.0477 72.30 850113 2.6241 6.7636e-4 0.04890
24430 20.0389 21.84 849986 2.6226 6.7676e-4 0.01478
4757 20.0372 -21.84 850006 2.6225 6.7679e-4 -0.01478
25432 20.0613 -104.87 850072 2.6257 6.7597e-4 -0.07089
5759 20.0689 104.87 850126 2.6268 6.7568e-4 0.07086
43468 20.0476 -165.47 850143 2.6242 6.7634e-4 -0.1119
23795 20.0553 165.47 850193 2.6253 6.7605e-4 0.1119
24659 23.0801 -82.37 870875 3.0746 5.7734e-4 -0.04756
4986 23.0844 82.37 870911 3.0753 5.7722e-4 0.04755
25160 23.0267 -101.37 870432 3.0663 5.7891e-4 -0.05868
5487 23.0317 101.37 870487 3.0671 5.7875e-4 0.05867

Table 12.8: Parameters for each interferogram (master scene) with regard to the central
point of the Ervěnice crop.
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scene Θ [deg] B⊥ [m] range [m] ε [deg] 4π
λ
ctr [m−2] 4π

λ
B⊥tr [m−1]

23428 19.0788 -72.08 844511 2.4856 7.1402e-4 -0.05147
3755 19.0831 72.08 844540 2.4863 7.1384e-4 0.05145
24430 19.0740 22.33 844415 2.4847 7.1428e-4 0.01595
4757 19.0723 -22.33 844435 2.4846 7.1432e-4 -0.01595
25432 19.0967 -105.58 844495 2.4878 7.1340e-4 -0.07532
5759 19.1046 105.58 844547 2.4890 7.1307e-4 0.07529
43468 19.0831 -165.74 844570 2.4863 7.1381e-4 -0.11830
23795 19.0909 165.74 844618 2.4875 7.1349e-4 0.11830
24659 22.1686 -82.56 864402 2.9374 6.0429e-4 -0.04989
4986 22.1734 82.56 864437 2.9381 6.0414e-4 0.04988
25160 22.1135 -101.86 863967 2.9289 6.0603e-4 -0.06172
5487 22.1187 101.86 864020 2.9298 6.0585e-4 0.06171

Table 12.9: Parameters for each interferogram (master scene) with regard to the central
point of the Košt’any crop.

12.3.4 Results

The interferogram double 25432 – 5759, 5759 – 25432 was excluded due to errorneous
orbits of 25432. After adjustment, where large DEM errors were estimated, probably
caused by unwrapping errors in the low-coherent interferogram double 23428 – 3755, 3755
– 23428, this pair was also excluded. The DEM error estimated from the remaining four
interferogram doubles is within ± 10 m (is higher outside of the corridor but this is not
interesting and is probvably caused by unwrapping errors).

The unwrapping error correction based on adjustment residues and described in section
13.6 was used in this case because small unwrapping errors are expected here. The
maximum scale found in this adjustment was -2 to 3. Then, all residues are smaller than
π. However, the resulting DEM-error map is not very smooth – on the other hand, when
we tried to perform the DEM-error estimation with the wrapped phase, the results were
even worse – higher DEM error estimated and the map was even less smooth.

Due to the fact that some unwrapping errors may still appear in the result, however not
often, we decided to perform low-pass filtering on the result. This is a bit complicated
due to the presence of NaNs (not-a-number) out of the processed area and standard
MATLAB function filter2 cannot be used because it causes that the result is even
narrower. Therefore, a new function dealing with NaNs in the right way was constructed.
Standard convolution filtering was performed and the matrix used is

Mfilt =

 1 2 1
2 3 2
1 2 1

 . (12.12)

The result is imaged in figures 12.15 and 12.16 and we consider it suitable (the SRTM
DEM in this area is also smooth). The situation is a bit worse in the case of the Košt’any
crop where more points with unwrapping errors are assumed.
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Figure 12.14: Colorscale for the DEM error. The left and right borders are defined
individually for each image.

a b c

Figure 12.15: DEM error estimated from four tandem interferograms (a), its filtered
version (b) and its unique standard deviation (c) for the Ervěnice crop. The colorscale is
imaged in figure 12.14, here −6π on the left and 6π on the right for the DEM error and
0 on the left and π on the right for the unique standard deviation.

12.4 Temporal standard deviation

The idea to compute a temporal standard deviation of each point of the interferogram was
inspired by [36]. Stefania Usai in her thesis computes the temporal standard deviation in
order to measure the quality of each point. She used the interferogram phases referenced
to a single point.

According to her, the temporal standard deviation should be small for stable points,
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a b c

Figure 12.16: DEM error estimated from four tandem interferograms (a), its filtered
version (b) and its unique standard deviation (c) for the Košt’any crop. The colorscale is
imaged in figure 12.14, here −12π on the left and 12π on the right for the DEM error and
0 on the left and π on the right for the unique standard deviation.
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because the referenced phase is expected to be similar in all interferograms (she supposes
the reference point is stable but we cannot guarantee it).

However, for unstable points the temporal standard deviation is expected to be higher, and
due to the fact that unwrapping errors may apply, the phases in the temporal dimension
may also have uniform distribution.

In order for the temporal standard deviation to contain an information, i.e. be indepen-
dent from phase unwrapping errors, it is computed from the phases in the ambiguous
interval (−π, π).

Phase mean is computed regularly with the assumption that the phase is represented in
the above mentioned interval; phase standard deviation is computed similarly; however,
the differences between the particular values and the mean are adjusted to be always in
the same interval.

Finally, we decided to compute a different phase mean and phase standard deviation:
we use the wrapped value and before further computations, we divide it by the temporal
baseline, yielding the phase change in a day. Therefore, we compute the mean of the daily
phase change and its standard deviation.

Please note that for these computations, DEM-error corrected interferograms were used
and interferograms containing scenes 25432 and 40963 were excluded due to orbit errors.
The results can be found in figures 12.17 and 12.18.

The following conclusions may be done on the basis of the computed means and standard
deviations: the deformations are not significant and may get lost in the unwrapping errors.
However, the adjustment is much more precise and the deformations may appear there. It
may also suggest to perform the iterative adjustment (see next chapter) with the wrapped
phase, instead of the unwrapped one – the unwrapping errors are higher in the unwrapped
case and the iterative adjustment works better if the unwrapping errors are smaller.

A trend can be seen in figures 12.17 and 12.18. This trend is probably caused by residual
atmospheric influence – in adjustment, the atmospheric delay will be a part of the com-
puted deformations where it can be filtered out using a low-pass filter (in the deformation
model).
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a b c

Figure 12.17: Deformation velocity average within the selected interferograms computed
with the wrapped phase (a), deformation velocity average computed with the wrapped
phase (b) and temporal standard deviation computed with the wrapped phase (c) for the
Ervěnice crop. The colorscale is imaged in figure 12.14 and the range is: (−0.25; 0.25) for
(a), (−0.5; 0.5) for (b) and (0; 2) for (c). However, there are only 96 points (not spatially
continuous) in the crop for which the absolute value of the deformation velocity average is
higher than three times its standard deviation. This means that the area is stable by the
first approximation. The significant difference between (a) and (b) also indicates many
unwrapping errors, particularly further away from the unwrapping seed which is the same
as the reference point (near the blue-yellow boundary in (b)).
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a b c

Figure 12.18: Deformation velocity average within the selected interferograms computed
with the wrapped phase (a), deformation velocity average computed with the wrapped
phase (b) and temporal standard deviation computed with the wrapped phase (c) for the
Košt’any crop. The colorscale is imaged in figure 12.14 and the range is: (−0.1; 0.1) for
(a), (−1; 1) for (b) (some points at the lake border are out of range in both cases) and
(0; 2) for (c). However, there are only 18 points (not spatially continuous) in the crop for
which the absolute value of the deformation velocity average is higher than three times
its standard deviation. This means that the area is stable by the first approximation.
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Chapter 13

Processing Procedure

Data processing has two parts: first, data received from ESA are processed in GAMMA
software in order to produce interferograms, subtract the flat-Earth phase and the phase
corresponding to topography and unwrap the results, and then the resulting data are
processed in MATLAB in order to compute the temporal development of the deformations.
The processing procedure is described in detail in the following text.

13.1 Interferometric processing

The first processing step is to read the data from the CDs received from ESA and to
substitute the approximate orbits by the precise ones, downloaded from [27]. This is
performed by commands par ESA ERS, DELFT orb SLC and DELFT vec.

Each pixel of all interferograms must correspond to the same point in reality. Dur-
ing interferogram processing, coregistration with a subpixel precision is performed, but
coregistration of all scenes with regard to one of them (master) is neccessary. Coregistra-
tion during interferogram creation has the disadvantage that it does not allow to create
interferograms between two non-master (slave) scenes. In addition, coregistrating small
crops of the scene is not always successful because of lack of data.

Therefore the following procedure is applied:

1. All scenes are coregistered with regard to the selected master. Magnitude data are
used for quantification of the similarity of the two scenes. Coregistration of the
whole scenes allows to take advantage of all the magnitude data. This is performed
in the GAMMA software using the offset pwr and SLC interp commands. During
coregistration, spectral filtering is performed as described in Chapter 5.

2. The coregistered scenes are cropped in order to perform further processing only for
the area of interest. This is performed using the SLC copy command.

3. Interferograms are created. Each scene is paired with every other scene and coreg-
istration is no more performed (the SLC intf command).

95
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4. Flat-Earth phase is subtracted using precise-orbit data (the base init and ph slope base

commands).

5. Coherence is computed using the complex values of the coregistered scenes (the
cc wave command).

6. The phase corresponding to the topography is subtracted. First, geocoding lookup
table of the interferogram (with regard to the DEM) is created using the gc map com-
mand. Second, this lookup table is used for conversion of the DEM into SAR coordi-
nates (the geocode command). Then, the simulated phase is computed (phase sim),
using precise orbits and the converted DEM. Finally, the simulated phase is sub-
tracted from the flattened interferogram (the sub phase command). The resulting
phase should contain only the deformation signal.

It is recommended to perform coregistration between the interferogram (i.e. its
magnitude) and the magnitude corresponding to the topography (computed using
the DEM), but we omit this step, considering it unneccessary. The same DEM
is used for topography reduction of all interferograms, and the position error was
smaller than one pixel.

SRTM DEM [28] is used for topography phase subtraction.

7. The resulting phase is filtered (adf command) in order to improve spatial continuity
and reduce the number of phase errors. Filtering is performed on the basis of a local
fringe frequency, in order not to filter out the high-frequency component of the phase
(which is usually not neccessary if filtering topography-subtracted interferogram).
More details about the algorithm may be found in [12].

8. The deformation phase is unwrapped. The following commands are used: corr flag

for creating the tree branches to be avoided during phase unwrapping using coher-
ence data (areas with coherence lower than 0.3 are avoided), neutron uses the in-
tensity information and allows the following script to avoid areas of layover, shadow
etc., generating branch trees, and grasses for phase unwrapping with the generated
branch trees. The reference point is entered as the unwrapping seed, so that this
point always has a value in the unwrapped phase file.

9. Due to the fact that the GAMMA software works in big-endian representation and
the following processing is performed on a little-endian computer, the data are
byteswapped (using home-made byteswap-float script).

10. The baseline file, created using the base init command in step 4, contains the
baseline and its change rate in the TCN system (the radial, tangential and cross-
track components). Using the command base perp, the baseline is converted to the
perpendicular-parallel system, with regard to the radar ray direction. This is then
used for the estimation of the DEM error, as described in section 8.8.

The following processing is performed in MATLAB, GAMMA software is only used for
displaying the results.
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13.2 Data selection for processing

As already noted, the interferograms are incoherent on most of their area. On the other
hand, the area of interest, i.e. a road or a village, is usually coherent (though not in all
interferograms). The problem is now: how to select the interferograms to be processed,
and how to select individual pixels?

Unexpectedly, the problems are solved in the reverse order.

13.2.1 Pixel selection

For pixel selection, the mean coherence throughout the interferograms for each pixel is
computed. In the resulting map (see figure 13.1 (a) or 13.2 (a)), the most coherent
features are obvious. A coherence threshold is found manually and determines pixels to
be processed (see figure 13.1 (b) or 13.2 (b)). Threshold for both crops can be found in
tables 14.1 and 14.2.

However, before thresholding the mean coherence map must be low-pass filtered in order
to eliminate the noise – within the noisy areas, some pixels with higher coherence may
appear. Also, the image borders with higher coherence (originating probably from the
fact that smaller area is used for coherence computation) must be eliminated – this is
performed manually. One can see that only a small number of pixels out of the area of
interest are processed.

13.2.2 Interferogram selection

Theoretically, the best result would be obtained if all interferograms were processed. How-
ever, the number of interferograms of 552 and the size of the processed area (required to be
implemented into a MATLAB array) would mean a very long time for processing, higher
probability of getting stuck in a local minimum, and even the eventuality of impossible
processing due to the limited memory size (the limit is 2 GB on most computers due to
the 32-bit architecture).

During previous processing attempts, we found the optimal number of interferograms
processed to be about 100. Of course, the most coherent interferograms are to be selected
– but manual selection is very subjective, although it regards the fact that all scenes are
present in the processed interferogram (which is not the case of our technique).

We tried three ways of selecting interferograms to be processed:

• The number of ”coherent” points within the selected pixels. The term ”coherent” means here
only that a coherence of the point is required to be above a predefined threshold. More coherence
thresholds have been selected – the histogram of the computed number of coherent points may be
seen in figure 13.3.

• Phase standard deviation within the selected pixels. The histogram of phase standard deviation
can be seen in figure 13.4. This aproach causes interferograms with a low-pass trend (e.g. due to an
orbit error) to be less applicable. This feature may be both the advantage and the disadvantage.
The trends in the interferograms are an artifact, causing higher residues and therefore higher
standard deviations – however, each interferogram has some trend due to the fact that the orbits
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a b

Figure 13.1: Filtered mean coherence of each point (a) and its thresholding with 0.3 (b)
for the Ervěnice area. The coherent interferogram borders were eliminated manually.

are never exactly precise – and determining a level of ”acceptable” trend is a sensitive question.
On the other hand, it is not easy to compute the phase standard deviation from the wrapped
phase (and it is even less reasonable to compute the phase standard deviaton for the unwraped
phase due to possible unwrapping errors which do not predicate the phase stability) because of
the wrapped nature of the phase – and some interferograms, which may be quite good as phase
stability is concerned, may get a high phase standard deviation. In addition, this method assumes
that interferograms containing deformations within the selected pixels are discriminated.

• Mean coherence within the selected pixels. The histogram of the mean coherence can be found in
figure 13.5.

Unfortunately, all histograms have only one local maximum, making it impossible to select the threshold
automatically or reliably. Therefore, we decided to choose the threshold on the basis of the desired
number of interferograms for processing (please also note that some interferograms cannot be unwrapped
due to the incoherence of the unwrapping seed – these may not be taken into account).

Finally, the mean-coherence approach was selected, because of its better reproduction
– the threshold may be easily compared with the coherence threshold used during area
selection. It is required to be higher than the previous threshold – the incoherent pixels
are not involved into this evaluation.

The actual thresholds used for processing can be found in tables 14.1 and 14.2.
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a b

Figure 13.2: Filtered mean coherence of each point (a) and its thresholding with 0.3
(b) for the Košt’any area. The coherent interferogram borders were eliminated manually
except for the border of the Barbora Lake (bottom right).

13.3 DEM error correction

Before further processing, DEM error correction is performed. It is not involved in the
adjustment step, as suggested in section 8.8, because adjustment like this was very prob-
lematic due to the unwrapping errors – the estimated DEM error was in the order of
kilometers in some cases. We therefore decided to estimate the DEM error separately
using only tandem pairs, where no deformation is expected, and due to the insufficient
number of coherent tandem interferograms, also tandem interferograms from a different
track were used, as described in section 12.3.

Now, the phase of all interferograms is corrected with regard to the estimated DEM error
and the perpendicular baseline figured out for each interferogram (using the base perp

script). The baseline variations within the interferogram are neglected, as evaluated in
paragraph 12.3.3. The maximum phase correction within the stack was a little larger than
2π, and we therefore consider the phase correction to be adviced to be performed before
referencing, due to the fact that it can easify finding the unwrapping errors during the
following process.
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Figure 13.3: The histogram of the computed number of coherent points in an interferogram
within the previously selected points for Ervěnice (a,c) and Košt’any (b,d) areas.

As suggested in [2], the phase should be reunwrapped after correcting the phase for the
DEM errors. However, this is contraproductive in our case, because phase unwrapping
should be performed for the whole interferogram (2D array), while the DEM error was only
estimated for a small number of points which are not neccessarily spatially continuous.
Phase unwrapping in an array, where a part is corrected for DEM errors, and a part is
not, would probably produce even more unwrapping errors than if this post-correction
unwrapping is not performed at all.

13.4 Referencing to a single point

The first thing to be performed with the inteferograms is their referencing. The reason is
that a single interferogram phase is assumed to be influenced by more error sources than
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Figure 13.4: The histogram of the phase standard deviation computed for each interfer-
ogram within the previously selected most-coherent pixels for Ervěnice (a) and Košt’any
(b) areas.
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Figure 13.5: The histogram of the mean coherence computed for each interferogram within
the previously selected most-coherent pixels for Ervěnice (a) and Košt’any (b) areas.

a difference bettwen two points in an interferogram. For example, atmospheric delay or
orbit errors do change very slowly in space, and therefore may be approximated by a
constant in first approximation, or by a plane in the second one.

13.4.1 Requirement for the reference point

It is expected that this point is as close as possible to the area where deformations are
mapped and the area between the mapped region and the reference point is expected to
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be correlated in order to allow for the best possible phase unwrapping.

Ideally, the reference point should be stable, should not be subject to ground deformation.
Due to the relativity of the interferometric measurements, the requirement of stability of
the reference point allows to expect that the adjusted results directly correspond to the
occured deformations. On the other hand, if the reference point is not stable – and the
computations need a reference point – the computed results are relative with respect to
the reference point and the deformations of the reference point must be computed using
an information from a different source.

However, in our case it is irreliable to assume a point of the cropped areas to be stable, and
therefore we dropped the stability requirement. In addition, the reference point cannot
be selected after interferometric processing due to the fact that the reference point is
used as the initial seed in the phase unwrapping process (see Chapter 7). Therefore, the
reference point was selected manually as one of the points which are coherent throughout
most of the interferograms. In addition, the interferograms where the coherence of this
point is lower than a threshold (0.3) specified within the unwrapping procedure, are not
unwrapped at all. However, the threshold for exclusion of interferograms due to a low
coherence of the reference point, used during the postprocessing step, is higher (0.4).

13.4.2 Ways of referencing

The first possibility is to reference the whole interferogram with regard to a single (stable)
point. However, the phase of this point may be imprecise due to decorrelation. In this
case, this point is assumed to be stable - if it is not, it must be taken into account
after adjustment when results are referenced back to absolute values (using e.g. in-situ
measurements).

Another possibility, suggested in [36], is to compute the reference phase out of a small
neighbourhood of this point (e.g. 3 by 3), using an average or weighted average (un-
wrapped phase is required, even if the adjustment is performed using wrapped phase).
Here, the decorrelation errors are assumed to be three times smaller, assuming non-
weighted average and the same phase accuracy of all involved points.

Another possibility is to compute the reference phase as a mean of all points in the
interferogram, selected for further processing. Here, the phase must be unwrapped, too,
and the result is largely influenced by unwrapping errors which are large far away from
the unwrapping seed. If referencing is performed in this way, the average of the area is
assumed to be stable, which influences back-referencing process of the adjustment results.

Referencing of the interferograms is a crucial step in order to fill the sum conditions
(8.17), (8.18). All referencing errors are projected into the phase sums and this causes
both higher adjustment residues and higher estimation of phase standard deviation.

It is possible to compute the sums of two or three referencing constants, for the (wrapped)
phase sums have typically a significant histogram maxima and a small disperse. However,
out of the reference sums, we did not find a way to compute the referencing constant for
each interferograms, due to a high rank deficit of the matrix C (see e.g. equation (8.19)).
Even if the matrix is decomposed into separated ”diagonal” blocks, the rank deficit of
the largerst block was still almost 20 (out of around 90). We did not find a way how
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to separate the block of referencing constants, which can be computed (if a referencing
constant of one or two interferograms is assumed to be estimated correctly) from the
others.

We measure the ”correctness” of referencing constants by computing the (wrapped) phase
sums s for one cycle and for all the appropriate points. The ”correct” value is known - it
is zero. Therefore

σcyc,i =

√∑
j s

2
ij

n
, (13.1)

where n is the number of valid points (indexed as j) in the two or three interferograms
and i is the cycle ID. This is computed for all cycles. Then,

σcyc,i,intf =
σcyc,i√
Ni

, (13.2)

where Ni is the number of interferograms involved in cycle i. The final phase standard
deviation given by referencing is then computed as

σref =

√√√√∑i σ
2
cyc,i,intf

Ncyc

, (13.3)

where Ncyc is the number of cycles. Please note that this standard deviation is directly
independent from coherence and therefore, it is to be quadratically summed with the
phase standard deviation evaluated from coherence in formula (6.8).

Before the description of the method we finally used for referencing, let us sketch here the
values of σref we got when using different referencing procedures:

• with no referencing, we get σref = 0.75 rad,

• using phase of the unwrapping seed for referencing, we get σref = 0.54 rad,

• using the phase average of the 3-by-3 neighbourhood of the unwrapping seed for
referencing, we get σref = 0.58 rad,

• using complex average of the interferogram for referencing (complex average is com-
puted iteratively as a sum of shifts in each steps; in each step, the phases of all
points are shifted so that their average is zero), we get σref = 0.78 rad,

• using (unwrapped) average of the interferogram for referencing, we get σref = 0.72
rad,

• using the SVD technique for solving the singular system of equations (having the
referencing constants sums), σref = 0.67 rad.

The values are only informative and were computed for the Ervěnice crop. We can now
assume that the only reasonable ways are referencing to a single point or to its small
neighbourhood. However, manually analyzing the values of σcyc,i,intf , we were able to
exclude some interferograms and get the final standard deviation down to σref = 0.47
rad. The procedure is described below.
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13.4.3 Excluding interferograms on the basis of high phase sums

First, let us note that the process of exclusion of interferograms is not based on a statistical
theory, it is performed manually and the moment where the exclusion is stopped, is also
determined manually.

Out of the list of σcyc,i,intf , we take out the cycles with largest values, and make a list
of interferograms which are involved in these cycles. We found out that mostly, if there
is a double of interferograms (interferograms AB and BA), and one of them is wrong
referenced, so is probably the other. Therefore, instead of excluding the interferogram
which is contained in our list the most times, we try to figure out the doubles and exclude
- if possible - only one interferogram from each cycle.

In the Ervěnice area, we excluded only 6 interferograms and the value of σref got down
to 0.47 rad from 0.54 rad. We stopped the process of exclusion due to the fact that there
was a step between the last excluded cycle and the following worse cycle of more than 0.1
rad in σcyc,i,intf .

However, the precision of the reference point (if only one point is used) is the same as for
the other points, and therefore the precision of the referenced phase is worsened by

√
2.

13.5 Interferogram consistency check

As relations (8.17) and (8.18) apply for each non-noisy point (or apply approximately for
a little-noisy points) when the phase is only flat-Earth and topography subtracted and
referenced to a single point, they must also apply for the unwrapped phase where there
are no unwrapping errors. First, let us use these relations for recognizing (and excluding)
the noisy points. The process consists of two steps:

• All 2-cycles and 3-cycles are found within the processed interferograms. A matrix C
(used e.g. in (8.19)) is constructed in this step: the number of columns corresponds
to the number of interferograms, and the number of lines corresponds to the number
of cycles. Each line contains three non-zero elements: 1 means that the phase of
the interferograms must be added, -1 means that the phase must be subtracted in
order to give 0.

• For each selected point, the unwrapped phase is checked for noise. The difference
between the left-hand side of equations (8.17), resp. (8.18), and an integer multiple
of 2π is allowed to be less than ±2

√
2σ∆ϕ,ref , resp. ±2

√
3σ∆ϕ,ref , considering the

phase standard deviation to be given by (8.22), although the interferogram phases
are not independent.

Stefania Usai in her article [37] notes that she corrects the referencing errors on the basis of cycle
sums; however she does not describe her approach in detail. That leads us to the idea that in her
case, only few interferograms are biased and need a correction, which is not our case. She uses the
histogram maximum as the correct reference cycle sum, not its mean – on the other hand, due to
a very strong maximum, we suppose both methods would bring very similar results.

Some interferogram doubles and triples are then considered bad, and only the inter-
ferograms contained in at least one good cycle, are considered OK. The bad cycles
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and interferograms are not processed any more and do not enter the adjustment.
The causes of the non-zero phase sums are described in section 12.2.

That also means that isolated interferograms, i.e. interferograms which cannot be
grouped to a double or triple, are excluded.

Please note that such an exclusion is performed for a single point.

13.6 Iterative adjustment

Due to the nonlinear nature of the problem (see section 8.9) and the risk of getting stuck
in a local minimum, the problem is solved iteratively. The basic steps performed during
the process (possibly multiple times) are listed below:

• Point selection (point sel). Please note that the unwrapping errors are found for
each point individually, but together for all interferograms in the stack.

Due to the terrain and large decorrelated areas, we can say that the unwrapping error
is not constant for the whole interferogram, nor for large areas of it, but it is assumed
to change slowly. Therefore, for evaluation of the unwrapping errors of a particular
point, we use the (already evaluated) unwrapping errors of the neighbouring points.

Therefore, the point selection algorithm is to maximize the number of already-
computed neighbours. The starting point is the reference point (see section 13.4),
which is the unwrapping seed. Here, the unwrapping errors are assumed to be zero,
such as the phase values themselves.

Then, the points are selected according to the scheme drafted in figure 13.6. If an
edge of the scene is encountered, the scheme remains the same, but the ”non-scene”
points are not evaluated.

Figure 13.6: The scheme of selecting points.

• Initial estimation and correction of phase-unwrapping errors (init). As described
in Chapter 7, the process of phase unwrapping is irreliable and errorneous, espe-
cially in forested, mountaineous or agricultural areas and in interferograms with
longer temporal or spatial baselines where the coherence is lower. However, the
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phase unwrapping errors are always integer multiples of 2π which makes the errors
potentially easily recognizable.

The initial estimation of the unwrapping errors is based on the unwrapping errors
of the neighbours (only those which were already processed). Due to the fact that
the processed points are not always spatially continuous (and some points may have
been excluded during coherence thresholding and consistency check (see section
13.5)), we also consider more distant points – the scheme is illustrated in figure
13.7. First, the points of level 1 are selected and the corrected phases are averaged
– and the points of each of the following levels are selected only in the case if the
previous levels contained no processed points. In other words, only points from a
single level are averaged and no weights are introduced.

12

1

2 1 2

1 3

3

3

3 4 5

4

4

5445

4

4

5 4

2

Figure 13.7: An approximate neighbourhood scheme. The actual neighbourhood width
is 8 (here 5).

• Adjustment according to one of the models described in Chapter 8 (adj). The re-
sults are then the unique standard deviationm0 and adjustment residues r according
to formula (8.15), together with the adjusted deformations and their standard de-
viations. The unique standard deviation m0 is expressed as

m0 =

√
rT r

l
, (13.4)

where l is the number of degrees of freedom (i.e. the difference between the number
of interferograms and the number of unknows). Please note that no weights are
introduced. In this step, the statistical tests are performed too (see section 13.9).

Details for adjustment using different models from Chapter 8 are discussed in section
13.8.

• Estimation of the phase unwrapping errors on the basis of adjustment residues
(corr res (n)) where n is the number of unwrapping errors to be adjusted). Pa-
rameter n changes during the iterative adjustment process. n unwrapped phases
are adjusted which have the highest residues – the adjustment size is the negative
value of the residue rounded to the closest multiple of 2π.
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• Getting the system out of local minima (release). A minimum is recognized if
none of the previously described steps changed the estimated unwrapping errors,
and therefore the unique standard deviation did not change. This happens if all
residues are smaller than 2π and indicates the solution is almost optimal – however,
there is no way to distinguish the really optimal solution from the suboptimal ones.
Therefore, we try out a certain number of solutions and select the one with the
smallest unique standard deviation m0.

Please note that we search the space of ambiguities (or unwrapping errors), but the
search is not complete. First, the number of possible unwrapping errors is infinite
(but countable), and second, the number of attempts is limited due to a very large
space, as mentioned in section 8.9.

However, this step is only performed if the cycle condition (8.19) is not fulfilled. If
it is, no change in the release step is possible due to the implemented algorithm.

A detailed description of the procedure of getting the system out of local minima
may be found in section 13.7.

The scheme of performing these steps for each point is illustrated in figure 13.8. The
scheme also contains procedures update and downdate which allow us to have two sets
of variables: the current optima and working variables which are used for all adjustments
as attempts. Let us note here that except for the last part of the process (containing
the release step), all steps are performed with the working variables. The step update

then means that the working variables are set to be the current optima and the downdate
step means that current optima are set to be working variables (i.e. the current working
variables are discarded).

13.7 Getting the system out of local minima

As already mentioned, the system of equations is nonlinear and tends to get stuck in a local
minimum. It is no way how to guarantee that the right solution was found if we do not
search the whole ambiguity (unwrapping error) space. In addition, this ambiguity space
is not finite due to the integer nature of ambiguities, and although high unwrapping errors
(or their differences within a small neighbourhood) are less probable, such a limitation
would be artificial.

We therefore decided to use a heuristic approach in order to reach fulfillment of both
conditions specified in section 8.9. First, we compute the vector of cycle residues ramb
(meaning of the symbols is the same as in formula (8.19))

ramb = C · u (13.5)

which indicates whether condition (8.19) is fulfilled or not. Typically, it is not, because
as shown in the scheme in figure 13.8, the fulfillment of the condition was not applied at
all during the iteration process. The vector ramb indicates an error in each cycle and now,
we are to transfer it into interferograms, i.e. each interferogram is to be attributed an
estimation of its error.
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corr_res (n)

downdate

n<L n=Lupdate

n=n+1

m0_s<m0 else

FINISH

release −> m0_s

point_sel

init
n=1
m0= inf

adj −>m0_s

m0_s<m0

n=1

else

Figure 13.8: The scheme of the iteration process. The constant L here means the number
of interferograms processed.
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This value is estimated as a mean (within the valid cycles) of all cycles where the particular
interferogram participates.

Then, the estimated error of the interferogram is multiplied by the residue for each in-
terferogram. The interferogram for which this value is highest, is corrected by one phase
cycle (2π) in the appropriate direction – according to the residue. Please note that all
”computations” in this step are approximate – this step is only performed if applying
corr res step iteratively did not change anything (see figure 13.8), i.e. all residues were
smaller than π.

A new ‘solution’ is found this way and it is completely evaluated – i.e. the adjustment is
performed, adjustment residues are computed, as well as ambiguity residues (ramb). If this
solution is better (according to m0) than all of the previous ones, it is used for evaluation
of another solution etc. However, the number of solutions to be looked for is limited in a
cycle of the release step, but, as can be seen in the scheme in figure 13.8, the release

step can be performed more times if a better solution was found than before. However,
the set of solutions, together with the information about what solutions have been tried,
is saved for another iteration.

Finally, only the solutions with zero ramb are selected as the output from the release

step.

However, if a solution with smallest m0 has zero ramb, this step has no possibility to
continue.

13.8 Adjustment

13.8.1 Deformation model

As mentioned in section 8.4, ATA (or ATauxAaux; A or Aaux are the design matrices) is
singular and one column has to be taken out of A in order to regularize it. Let us
call the scene, which the column corresponds to, the reference scene. By definition, all
deformations are zero at its time of acquisition.

As already mentioned, the deformation model may be underdetermined in some cases.
This is caused by possible exclusion of some interferograms during the unwrapping error
check process – some scenes may get lost from the system or the scenes may be in more
separate sets. In order for the adjustment to be possible, the design matrix Aaux (as spec-
ified in section 8.4) must be adapted in order not to contain the excluded interferograms,
as well as not to contain columns containing only zeros (excluded scenes). Similarly, the
vector of interferogram phases must be adapted, as well as the adjusted deformation vec-
tor must be adapted back to correspond to the whole system - the excluded scenes may
be different for each point. For those non-adjusted points and interferograms, we use the
NaN value.

However, it is senseless to select a different reference scene for each point (in order to
allow the maximum number of adjusted deformation): the results would be inconsistent.
Therefore, the reference scene must be selected carefully in order to make as many as
possible coherent interferograms. Then, the set of scenes to be adjusted always contains
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the reference scene and the other sets (possible more than one) cannot be computed. We
select scene 9767 as the reference scene for the Ervěnice area and 11771 for the Košt’any
area.

13.8.2 Changing-velocity model

In the velocity model, the problem of separate scene sets is solved by the SVD technique,
as described in section 8.7, together with two significant disadvantages of this method,
which are the higher standard deviations at the end of the deformation series, and the
possibility of atmospheric delay influencing a lot of adjusted deformations. On the other
hand, the deformations are better sampled in time.

However, the resulting deformations cannot be temporally filtered for the atmospheric
disturbances due to the fact that some of them are really adjusted and some of them are
estimated (the velocities are minimized) by the SVD method.

We use the scene 23428 as the reference one for both crops.

13.9 Reliability of the results, statistical tests

The accuracy of the results (i.e. deformations at the times of acquistion, resp. deformation
speed) depends on many factors. First, let us mention the random phase noise, which
also influenced the previous processing and caused some interferograms to be excluded
from the adjustment.

A priori, we consider the area (all pixels of the interferograms) to be stable. The null
hypothesis of the stability may be disclaimed with some criteria. The first way suggested
is to filter out the deformations which are smaller than a multiple of their standard
deviation.

On the other hand, we can use the regular approach: we reject the hypothesis of the
reliability of the adjustment model with respect to statistical tests.

We tried two ways to filter out the irreliable results:

• As suggested in [37], the adjustment residues were tested if they are normally dis-
tributed with the a priori precision. The a posteriori standard deviation and the a
priori standard deviation are compared and tested. Here, only the standard devia-
tion is tested, not the normality.

• The residues are tested for normality using the Kolmogorov-Smirnov test, as imple-
mented in MATLAB in the kstest command. Here, the residues are required to be
normally distributed with zero mean and unique standard deviation.

Both statistical tests are performed on confidence level of 5 % and in detail discussed
below.
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13.9.1 Snedecorov-Fischer distribution

In accord with [13], let us have two independent variables y1 and y2 with distributions
χ2(n1) and χ2(n2), where n1 and n2 are degrees of freedom of the respective distributions.

Their ratio

F =
y1
n1
y2
n2

, (13.6)

has then Snedecorov-Fischer distribution F (n1, n2).

We need to compare the a priori and a posteriori standard deviations. Here, in order to
set the same value for all of the a priori phase standard deviation, we use the value of
σ∆ϕ = 2

10
π, while the a posteriori phase standard deviation can be computed from the

adjustment residues.

Let us now consider the phase residues are normally distributed with zero mean. We then
substitute

y2

n2

= σ2
∆ϕ,ref , (13.7)

with n2 = ∞, and

y1 = sT s, (13.8)

where s are the adjustment residues. Here, n2 is the number of redundant interferograms.

The value F is then compared to Fα(n1, n2), known from the Snedecorov-Fischer distribu-
tion, and if F > Fα, then the hypothesis of a reliable result is rejected with the confidence
level α.

Numerically, MATLAB is unable to compute a reasonable value of Fα for n2 = ∞. In our
case (low values of n1), we can substitute it by n2 = 1000 (the value then differs at the
third decimal position).

13.9.2 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test allows to test if a data set belongs to a certain distribution.
In our case, we test if the data set of s

σ∆ϕ,ref
has the normal distribution N(0,1). In

comparison to the Fischer test described above, this one does not only test the standard
deviation, but also the normality of the residues. This test is described in detail in the
MATLAB help.

13.10 Geocoding

In the topography subtraction step, the lookup table converting map to SAR coordinates,
was created. As already noted, GAMMA allows to coregister the DEM with the SAR
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magnitude, but this process was not successful in our case – the areas are too small and
artificial objects are more clear in the magnitude image. However, trying to geocode the
whole scene, we found out that the difference between the DEM and interferogram is less
than a pixel. We therefore consider geocoding to be precise enough.

The last step is the conversion of the computed velocity or deformation maps into map
coordinates. It is performed with regard to the DEM processed in the topography sub-
traction step, and therefore the coordinates are in the same system, i.e. WGS-84. In
GAMMA, the script to perform the conversion is called geocode back.



Chapter 14

Results

Finally, we decided to perform the processing with both wrapped and unwrapped data.
Theoretically, the adjustment is to be performed only with the unwrapped data – however,
our algorithms allows to correct for small unwrapping errors, and the unwrapping errors
produced by the classical algorithm (described in Chapter 7) seem to be large due to low
coherence of the region, especially of those pixels which were not included in processing.
On the other hand, our approach to unwrapping error correction allows to take into
account also the third dimension – time. On the other hand, the spatial continuity is not
guaranteed (unlike in the classical algorithm), it is only supported by the init step.

Due to the fact that some interferograms could not be unwrapped by the classical method,
and therefore these interferograms are not available for processing using unwrapped data,
the properties of the processed data (such as number of interferograms, standard deviation
computed from the cycle conditions (see section 12.2)) are different for the wrapped and
unwrapped case. See tables 14.1 and 14.2 for details.

This chapter contains only some results - one scene for each crop, for both the deformation
and velocity model, and for both the wrapped and unwrapped phase used. All results
computed using the deformation model can be found in appendix B, results computed
using the velocity model cannot be found in this thesis at all, due to the fact that the
velocity model did not give a solution sufficiently reliable (compare the number of points
excluded by the statistical test in tables 14.1, 14.2 – the number of validated points
was lower than 10). In addition, using the velocity model, we did not even achieved to
fulfill the cycle conditions (8.17), (8.18), except for a few of the first points computed –
the points nearest to the reference point. Please also compare the value of the unique
standard deviation for both models in figures 14.6 and 14.12.

Figure 14.1: Colorscale. The left and right borders are defined individually for each image.
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wrapped unwrapped

pixel selection coher. threshold 0.3 0.3
interferogram selection coher. threshold 0.35 0.34
number of selected interferograms 122 124
number of intfs after exclusion 25432 112 113
selected points 3028 3028
crop size (lines x pixels) 600 x 250 600 x 250
other interferogram doubles excluded 12773 - 15779 5759 - 10268

12773 - 16280 5759 - 25933
5759 - 9767 4757 - 9767
5759 - 25933
14777 - 16280
24430 - 25933
10268 - 16280
9767 - 14777
24430 - 5759
12773 - 14777
11771 - 14777

std. dev. computed from phase cycles [rad] 0.53 0.47
standard deviation total [rad] 0.83 0.79
threshold for exclusion of a pixel 2 x 0.53 x

√
2 (

√
3) 2 x 0.47 x

√
2 (

√
3)

due to high phase sum error [rad]
total selected pixels 272,520 (90 x 3028) 323,996 (107 x 3028)
low coherence points to be excluded 116 29,211
points excluded during cons. check 57 787
total points entering adjustment 272,347 293,998
points excl. by the Kolm. test (defo model) 1287 1372
points excl. by the Fischer test (defo model) 1789 1235
points excl. by the Kolm. test (c-vel model) 3021 3009
points excl. by the Fischer test (c-vel model) 3021 3012

Table 14.1: Basic processing data about the Ervěnice area (both wrapped and unwrapped
case).
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wrapped unwrapped

pixel selection coher. threshold 0.3 0.3
interferogram selection coher. threshold 0.4 0.4
number of selected interferograms 129 120
number of intfs after exclusion 25432 123 114
selected points 5408 5408
crop size (lines x pixels) 500 x 100 500 x 100
other interferogram doubles excluded 5759 - 9767 5759 - 9767
std. dev. computed from phase cycles [rad] 0.41 0.42
standard deviation total [rad] 0.76 0.76
threshold for exclusion of a pixel 2 x 0.41 x

√
2 (

√
3) 2 x 0.42 x

√
2 (

√
3)

due to high phase sum error [rad]
total selected pixels 654,368 (121 x 5408) 605,696 (112 x 5408)
low coherence points to be excluded 161,606 202,532
points excluded during cons. check 9.061 11.475
total points entering adjustment 483,701 391,689
points excl. by the Kolm. test (defo model) 4670 4223
points excl. by the Fischer test (defo model) 1699 2077
points excl. by the Kolm. test (c-vel model) 5400 5404
points excl. by the Fischer test (c-vel model) 5357 5360

Table 14.2: Basic processing data about the Košt’any area (both wrapped and unwrapped
case).
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a b c

d e f

Figure 14.2: Results for the Ervěnice area – deformation model, deformation occured
between 1997-03-03 and 1997-09-29. Results achieved from the wrapped phase are imaged
in (a), (b), (c), results achieved from the unwrapped phase are imaged in (d), (e), (f).
Images (a), (d) contain all processed points, images (b), (e) contain points validated
using the Kolmogorov-Smirnov test, and images (c), (f) contain points validated using
the Fischer test. The scale is imaged in figure 14.1, with -150 mm on the left and 150
mm on the right. Not all the values are in this range – this only applies for most of the
corridor. The values of other pixels cannot be read out of this figure.
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a b

Figure 14.3: Results for the Ervěnice area – velocity model, deformation occured between
1996-01-07 and 1996-03-17. Results achieved from the wrapped phase are imaged in (a),
results achieved from the unwrapped phase are imaged in (b). Due to the very small
number of points validated by the statistical tests (see table 14.1), we do not present the
results validated by them. The scale is imaged in figure 14.1, with -50 mm on the left
and 50 mm on the right. Not all the values are in this range – this only applies for most
of the corridor. The values of other pixels cannot be read out of this figure.
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Figure 14.4: The Ervěnice corridor geocoded (unwrapped phase, deformation model).
The deformation between scenes 9767 (1997-03-03) and 12773 (1997-09-29) is imaged.
The resampling partially damaged the picture, and we therefore show this only for better
orientation of the area. The coordinate system is latitude-longitude (WGS-84).

14.1 Interpretation

14.1.1 The Ervěnice area

It is not easy to interpret the Ervěnice corridor, the area which is more coherent than
its surroundings, but the low coherence of its surroundings significantly influences phase
unwrapping of the corridor itself. In addition, as seen in figures B.5 to B.7, the processed
area contains gaps which may be in some interferograms large enough to interrupt the
spatial continuity of the estimated phase unwrapping errors, which should be strengthened
by the init step. The reference point is located in the bottom part of the corridor, in
the magenta area in figure B.1 upper left.

Unfortunately, the reference point is not stable. The area of Ervěnice corridor is of such a
nature, that we cannot rely that any of the points processed within the relatively spatially
continuous (coherent) area might be stable. Therefore, we cannot say anything about the
corridor as a whole, we can only look for the differences between individual parts of the
corridor. However, partially due to the spatial incontinuity of the processed area, we can
never be sure if the phase differences are caused by a real deformation or by inappropriate
estimation of the unwrapping error.

One would expect the point near the reference point to have a similar deformation in time.
The temporal progress of the deformation is imaged in figure 14.5 (a, b); please note that
the deformation scale is significantly different, for the wrapped data the progress looks
better (except for few scenes at the beginning), but it is probably comparable with regard
to the range of possible values – probably, there was a large unwrapping error estimate
in the wrapped case. On the other hand, the wrapped case loooks to be better spatially
continuous.
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Figure 14.5: Progress of the deformation in time for the Ervěnice area. The figure images
the reference point and its 8 neighbours. Atmosphere is not filtered. Image (a) con-
tains the deformation for the wrapped phase and deformation model, image (b) contains
the deformation for the unwrapped phase and deformation model, image (c) contains
the deformation for the wrapped phase and velocity model, and image (d) contains the
deformation for the unwrapped phase and velocity model.

In comparison to the Košt’any area, where the same interferograms were excluded due to
large referencing errors, here preanalysis showed different interferograms to be excluded
(see table 14.1). This may cause the difference between the unwrapped and wrapped
deformation (see figure 14.5 (a, b)) in comparison to the Košt’any area (see figure 14.13)
(a,b)), where both progressions were similar with regard to jumps (corresponding to the
referencing errors).

However, referencing errors are attributed to interferograms, not to the scenes, and there-
fore may influence the temporal progression in a different way (due to the instability of
the adjustment method).

For the Ervěnice area, we decided to interpret the wrapped data, we attribute the spatial
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a b c d

Figure 14.6: Unique standard deviation m0 for the Ervěnice crop. Image (a) contains
the case where wrapped phase is used together with the deformation model, image (b)
contains the case where unwrapped phase is used together with the deformation model,
image (c) contains the velocity model with wrapped phase and image (d) contains the
velocity model with unwrapped phase. The scale is imaged in figure 14.7 and is from 0
to 43 mm. The lower row represents the details of the upper figures – details around the
reference point.

incontinuity to large unwrapping errors, influenced partially by the incoherent data out
of the corridor. In the neighbourhood of the reference point, unwrapped and wrapped
data give similar results.

Figure 14.8 shows the temporal progress of the deformation for points distant from the
reference point. Please note that for the point close to the reference point (image (a)),
all points within the small neighbourhood have a very similar temporal development.
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Figure 14.7: Colorscale for the unique standard deviation.
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Figure 14.8: Temporal progress of the deformation in the Ervěnice crop for a point very
close to the reference point (a), for a point in the right part of the area, separated from
the corridor itself (b), for a point located near the centre of the corridor (c) and for
the top part of the corridor (d). Deformation computed from the wrapped phase, using
deformation model is imaged. The figures contain the progress of the deformation for
nine points – centered at (470,154) for (a), (476,207) for (b), (389,98) for (c) and (180,16)
for (d). The bottom part of the corridor is geographically located on the west, and the
part separated from the corridor is on the south (see figure 14.4).

This is not the case of the other points, more distant from the reference point, and in all
cases separated from the continuous area by a gap. Figure 14.8 therefore illustrates the
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a b c

Figure 14.9: Results for the Košt’any area – deformation model, wrapped case. Defor-
mation occured between 1997-07-21 and 1998-04-27 are imaged. Image (a) represents all
processed points, (b) represents points validated by the Kolmogorov-Smirnov test, and
(c) represents points validated using the Fischer test. The scale is imaged in figure 14.1,
with -150 mm on the left and 150 mm on the right. Not all the values are in this range –
this only applies for the continuous region in the middle of the crop. The values of other
pixels cannot be read out of this figure. Results for the unwrapped case are imaged in
figure 14.10.
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a b c

Figure 14.10: Results for the Košt’any area – deformation model, unwrapped case. Defor-
mation occured between 1997-07-21 and 1998-04-27 are imaged. Image (a) represents all
processed points, (b) represents points validated by the Kolmogorov-Smirnov test, and
(c) represents points validated using the Fischer test. The scale is imaged in figure 14.1,
with -150 mm on the left and 150 mm on the right. Not all the values are in this range –
this only applies for the continuous region in the middle of the crop. The values of other
pixels cannot be read out of this figure. Results for the wrapped case are imaged in figure
14.9.
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a b

Figure 14.11: Results for the Košt’any area – velocity model, deformation occured between
1996-01-07 and 1996-06-30. Results achieved from the wrapped phase are imaged in (a),
results achieved from the unwrapped phase are imaged in (b). Due to the very small
number of points validated by the statistical tests (see table 14.2), we do not present the
results validated by them. The scale is imaged in figure 14.1, with -150 mm on the left
and 150 mm on the right. Not all the values are in this range – this only applies for the
continuous region in the middle of the crop. The values of other pixels cannot be read
out of this figure.
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a b c d

Figure 14.12: Unique standard deviation m0 for the Košt’any crop. Image (a) contains
the case where wrapped phase is used together with the deformation model, image (b)
contains the case where unwrapped phase is used together with the deformation model,
image (c) contains the velocity model with wrapped phase and image (d) contains the
velocity model with unwrapped phase. The scale is imaged in figure 14.7 and is from 0
to approx. 43 mm. The lower row represents the details of the upper figures – details
around the reference point.
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Figure 14.13: Progress of the deformation in time for the Košt’any area. The figure im-
ages the reference point and its 8 neighbours. Atmosphere is not filtered. Image (a)
contains the deformation for the wrapped phase and deformation model, image (b) con-
tains the deformation for the unwrapped phase and deformation model, image (c) contains
the deformation for the wrapped phase and velocity model, and image (d) contains the
deformation for the unwrapped phase and velocity model.
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Figure 14.14: The Košt’any area geocoded (unwrapped phase, deformation model). The
deformation between scenes 11771 (1997-07-21) and 15779 (1998-04-27) is imaged. The
resampling partially damaged the picture, and we therefore show this only for better
orientation of the area. The coordinate system is latitude-longitude (WGS-84).

importance of the spatial continuity, i.e. the importance of the init step. The wrapped
nature of the phase helped in the case of image (b) which corresponds to an area out of
the corridor.

However, a subsidence trend or even the subsidence velocity cannot be estimated from
these images, probably due to referencing errors.

14.1.2 The Košt’any area

Regarding spatial continuity, which is a feature recognizable at the first glance, we can see
that the results from the unwrapped phase are comparable to those computed from the
wrapped phase (see figures B.8 to B.11 in Appendix B), considering the area containing
the reference point (the centre of the village). Theoretically, the phase must be unwrapped
– the wrapped case was involved into the study due to the suspiction that unwrapping
errors to be corrected in the iterative adjustment may be smaller than in the unwrapped
case. We will therefore only interpret the unwrapped results.

We can also see that the deformations computed for later dates are more continuous in
space – however, figure 14.13 does not suggest a strange temporal development, except for
the beginning of the time axis (the first tandem pair). On the other hand, this figure only
concerns the area very close to the reference point (60 m in range and 10 m in azimuth).
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Figure 14.15: Temporal progress of the deformation for the right (a) and left (b) side
for the Košt’any area – unwrapped phase, deformation model. The figures contain the
progress of the deformation for nine points – centered at (191,51) for (a) and (191,83)
for (b). The right side of the processed area corresponds to the south and the left side
corresponds to the north of the area (see figure 14.14).

Regarding the temporal development of the deformation, imaged in figure 14.13 (b), it can
be seen that the curves divide into two, which makes us think that the developments are
computed rather well. On the other hand, the temporal discontinuity is probably caused
by referencing errors (i.e. the phase of the reference point is imprecise due to partial
decorrelation) or by atmosphere (which is improbable due to the small distance from the
reference point). This opinion is enforced by the fact that all curves are discontinuous in
a similar way. Unfortunately, a trend cannot be recognized here, and therefore we must
conclude that the referencing errors are more significant that potential deformation trend.

Figures B.10 and B.11 suggest that the left and right sides of the coherent part of the
Košt’any area are deformed in a different way – a similar development may be seen in figure
14.13 (b) where the temporal development for 9 points follows two dominant curves. We
therefore decided to plot the temporal development for two other points – one on the left
side (north-eastern part of the village) of the coherent area and the other on the right
side (south-western part of the village); see figure 14.15. Please note that both of these
points are still in the centre of the village, due to the fact that the edges are not coherent.
However, neither this figure confirms a deformation trend in any part of the area, the
temporal incontinuities are probably caused by the referencing errors – we consider such
temporal discontinuities very improbable to happen. Please note that the development in
14.15 (a) is more strange than in 14.15 (b), especially at the end of the time scale. This
may be a sign for possible deformations in the north-eastern part of the village; however,
the trend is too short (in time) and the difference between both parts of the village are
less significant than the temporal irregularities found in figure 14.15. Let us here also
remind that the spatial continuity is enforced by the init step, which may influence the
similarity between both developments.

Unfortunately, this area is not in-situ monitored (according to our information), making
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it impossible to compare the results with other methods.

14.2 Discussion

An important problem in the interpretation is the unfamiliarity to the monitored area, or
even a nonexistence of a coherent stable point. This is the case of the Ervěnice corridor
– the area is a large waste dump where a road and a railway was built, with first esti-
mations for subsidence about half a meter a year (in 1980s). If the reference point was
stable, theoretically, it would be easy to say which part of the monitored area subsides
and which one does not – without the knowledge, the only possibility is to find out the
temporal progress of the deformation for the reference point and add it to the computed
deformations of other pixels.

However, even if we supress the stability problem by looking only for deformation relative
to the reference point, the results cannot be easily interpreted. There is always the
possibility that the unwrapping errors estimation is wrong – the cycle condition fulfillment
is not a guarantee that the errors are estimated right, and however small the unique
standard deviation is, it is always a possibility that it might be even smaller for other
solution. The problem of finding the ”right” unwrapping error vector is impossible due
to two facts:

• there is no guarantee that the unwrapping error vector with the smallest unique
standard deviation is that one that corresponds to the physical reality;

• the vector with the smallest unique standard deviation can be found only if all
vectors are exploited, which is not possible due to the limited computation time.

The results displayed spatially, see figures B.5 to B.11, look to be quite spatially con-
tinuous. However, if we use a more detailed colorscale (colorscale at 14.1 corresponding
to the 〈−3π, 3π〉 interval), the images do not look spatially continuous any more. That
means that the changes between neighbouring points are not very small, but they are
smaller with regard to very points; however, they are not generally smaller with regard
to relatively close (but not neighbouring) points.

In addition, the temporal progresses, imaged in figures 14.5, 14.8, 14.13, 14.15, are not
continuous at all, and the trends cannot be estimated. This problem is attributed to the
unsolved referencing, described in section 13.4, which therefore is an important problem
to be solved in future.

As can be seen mainly in the Košt’any area, out of the coherent village centre, the results
here are spatially very incontinuous – one can say that it is neccessary to know the
unwrapping errors exactly for one point, to estimate the unwrapping errors of the whole
area – only gaps smaller than the range of the init step (described in section 13.6) can
be overrun.

The difference between the results in both areas can be attributed to the following:

• the Košt’any area is more coherent (see coherence thresholds in tables 14.1 and 14.2),
and therefore the phase values are more reliable;
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• the village centre of Košt’any is spatially continuous, and we can afford to interpret
only the results in the area containing the reference point;

• the Košt’any area is probably more stable; the spatial variations at the Ervěnice
corridor may be really caused by waste-dump subsidence.

Unfortunately, increasing the coherence threshold for the Ervěnice area would leave less
points, creating even more (and larger) gaps, which would even worsen the spatial conti-
nuity of the results. Therefore, the problem seems unsolvable with the given coherence.
On the other hand, it might help to increase the coherence threshold not by spatial selec-
tion, but by interferogram selection – to decrease the number of processed interferograms.
Consequently, the number of redundant measurements would be smaller and it would
probably even exclude several scenes (the results will be available for less dates).

The spatial continuity may be also improved by increasing the number of searched solu-
tions in the release step (see section 13.7). However, due to the fact that the release

step is mostly finished after this number of searched solutions (the only possibility to
finish it earlier is to find the optimal solution at the beginning, when only few other so-
lutions were found and the estimations cannot be developped any more (please remind
that new solutions may be developped only if the cycle conditions are not fulfilled)), the
time required for computations would increase together with the increasing number of
searched solutions.

Another suggestion is also to adapt the release step so as to work also in case when the
cycle conditions are fulfilled – if a suboptimal solution was found before the release step,
with cycle conditions fulfilled, there is no way to continue searching for a better solution;
however, we never know if the solution found is optimal or not.

The results computed for the velocity model are better spatially continuous; on the other
hand, the unique standard deviation is much larger here than for the deformation model
(see figures 14.6 and 14.12). In addition, the cycle conditions were not fulfilled for most of
the points in the processed area. This is due to the fact that the release step, designed for
the deformation model, does not work for the velocity model and requires an adaptation:

As described in section 13.7, the cycle residues vector ramb (see formula (13.5)) is multi-
plied by the adjustment residue vector. However, due to the rank deficit in the velocity
model, some adjustment residues are NaN (not-a-number), and also some cycle residues
are zero, if some of the cycle conditions were fulfilled. In the velocity model, it often
happens, that for all interferograms, the multiplication result is either NaN, or zero. The
release step then cannot continue looking for other solutions.

The fact that the release step does not work here, also causes that the unwrapping errors
do not change so much and the results look better spatially continuous.

One can see for both areas, that the deformations computed from wrapped phase are
not so large as deformations computed from the unwrapped phase. This is given by the
nature of phase unwrapping: the wrapped phase is within the 〈−π, π〉 interval, while the
unwrapped phase is within the (−∞,∞) interval, and taking that the estimated phase
unwrapping errors are within a similar range, the wrapped data are expected to result
in smaller deformations. However, it is not clear which of these deformations is closer
to reality – if the unwrapping errors are really large and the differential interferograms
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should have not been unwrapped, or if the unwrapping errors are small and the phase of
the differential interferogram varies in such a long range.

Coherence analysis

Appendix A contains graphs of mean coherence: each scene is paired with all of the others
and the coherence of each pair is plotted with regard to both temporal and perpendicular
baseline. We would like to to evaluate the influence of the temporal and perpendicular
baselines to coherence.

One can say that the coherence is relatively high (except for the scene 25432) for the
tandem pairs (temporal baseline is 1 day), but in other cases, it is practically independent
from both temporal and perpendicular baselines. For some scenes, one can see that if
paired with one or two other scenes, the coherence is significantly higher than if paired
with others – we attribute this to seasonal effects: two scenes both acquired in winter are
expected to be more coherent than two scenes, of which one (or both) was acquired in
summer (due to vegetation).

Statistical tests

Statistical tests are described in section 13.9 in detail. Although the Fischer test only
tests the value of the unique standard deviation with regard to the required accuracy,
and the Kolmogorov-Smirnov test also tests the distribution of the residues, the number
of points validated by these tests is similar (although there are many points validated by
only one of these tests).

For the Košt’any area, one can see in table 14.2 that the number of points excluded due
to the Kolmogorov-Smirnov test is much larger than the number of points excluded due
to the Fischer test (for the deformation model). This means that the unique standard
deviation was small enough, but the residues did not have normal distribution.

Both tests were performed with the same confidence level of 5 %, and therefore it was not
expected not happen that there are more points excluded due to the Fischer test than due
to the Kolmogorov-Smirnov test, as was the case of Ervěnice, deformation model, wrapped
phase (see table 14.1). Also in other cases it occured that there were some points excluded
only due to the Kolmogorov-Smirnov test. The tests are performed independently, and
the Kolmogorov-Smirnov test is implemented in MATLAB. However, we think that those
points, which were excluded only by one of the tests, would be excluded by the other if
slightly better accuracy was required. Therefore, we suggest to exclude all points which
were not validated by both tests.

One would expect that the deformations, validated by the test, would look much more
spatially continuous than the deformations without validation. However, figures 14.2, 14.9
and 14.10 do not confirm it, but the fact that the unfiltered figures look spatially more
coherent may be caused by the fact that all points are imaged and spatial continuity is
stressed by the init step of the iterative adjustment.

Regarding Košt’any area, we would say that the Kolmogorov-Smirnov test filtered the
results in a better way (see table 14.2 for the difference between the number of points
excluded due to each test), but in the Ervěnice area, the filtered results look similar.
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Chapter 15

Conclusions

InSAR is a potential technology to map ground deformations – landslides, subsidences,
postseismic effects etc. Its advantage is that it allows to process the whole area at the
same time, with no additional costs which would be the case of in-situ measurements.
However, its temporal resolution is limited by the satellite overpass.

24 scenes from ERS-1/2, acquired in 1990s, were used for processing. A method was
developped for processing, using iterative adjustment with the estimation of unwrapping
errors. However bad the results look, they are much better than the first attempts, pub-
lished in [44]. In the used scale, they are spatially continuous; however, no deformations
can be estimated from the results.

The method might be useful to estimate an area which develops in a different way than
any other area – e.g. in the Košt’any crop, where the right and left sides of the coherent
village centre develop differently. However, in our case, where referencing errors are higher
than required, we cannot say if it is really caused by different deformation development,
or by the instability of the method, particularly by the estimation of the unwrapping
errors.

We think that the basic problem of our project is decorrelation. Although the Ervěnice
corridor can be clearly distinguished from the surrounding area on the coherence map,
its coherence is not high enough to provide a sufficient phase precision. Adjustment with
unwrapping error correction is less stable (in the numerical way) than the conventional
adjustment, and therefore requires better phase precision. The results from the Košt’any
area look better (the coherence threshold is higher here), but the coherence threshold of
0.5 (as recommended in [36]) cannot be used due to the fact that too few pixels would be
selected for processing, and therefore the processed area would contain gaps.

In the designed algorithm, the gaps are a big problem: the algorithm relies on the spatial
continuity of the area, estimating phase unwrapping errors on the basis of neighbouring
points at the beginning. And it is now clear that without this estimation, the results are
even less stable and therefore less spatially continous (and less reliable).

Unfortunately, InSAR always needs a pixel with known deformation. Usually, this is
solved by putting the reference point into a stable area, but this procedure cannot be
used in our case. In the Ervěnice corridor, no area can be a priori assumed to be stable.
In addition, it is probable in this case that a stable point would be separated from the
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deformed area by an incoherent area, which would make the initial estimation of the
unwrapping errors impossible.

However, in comparison to the preliminary results, these results look much better and we
hope that future adaptation of the algorithm (most of all estimation of the referencing
errors) will make the results reliable.



Chapter 16

Author’s Contribution to the State
of the Art

The following were performed by the author herself:

• Orbit error influence on the interferogram phase was derived for the flat-Earth
phase, for DEM subtraction and also for the 3-pass case (instead of DEM, another
interferogram is subtracted in order to eliminate topography influence) – see [41, 40].

• The method to coregister interferograms acquired on different tracks (see section
12.3.1) was developped – however, resampling introduces an error into the process.

• The approach to both point and interferogram selection was developed and used
instead of manual selection of interferogram and processing all pixels in the inter-
ferograms (see section 13.2).

• The method to analyse phase sums and then exclude the worst interferograms was
developed. However, this problem is not yet completed (see section 12.2).

• The system of iterative adjustment was designed (see figure 13.8):

– point sel (see figure 13.6),

– init,

– corr res, see section 13.6,

– release, see section 13.7.

• The whole postprocessing procedure was implemented in MATLAB, and optimized
to be computed in a reasonable time (the pseudoinverse of the design matrix is
computed only once for each point, however the adjustment is performed more
times).

• The results were interpreted.
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Chapter 17

Future Recommendations

In future, the following improvements in the method are suggested to be performed:

• The Permanent Scatterers method (as overviewed in Chapter 10) may be used,
allowing deformation monitoring in areas which are not continuously coherent.

• GPS (or Galileo) measurements may be used to improve the accuracy of the InSAR
measurements, especially allowing to estimate the unwrapping ambiguities/errors a
priori (see e.g. [29, 30]).

• It may be possible to adapt the phase unwrapping, described in Chapter 7, using
the map of pixels selected for unwrapping, and enforce that the pixels out of the
selected area are not used for unwrapping. This time, we are not sure if GAMMA
allows it, but it may be performed using a more complex approach.

• The reference phase of each interferogram may be adjusted with regard to the phase
sums (the mean value or the histogram maximum) in interferogram doubles or
triples. Thesis [36] uses the histogram approach; however, we are not sure if this
is possible even for the case when most of the reference phases contain an error
– the problems are described in section 13.4. The value of σref (see section 13.4)
should be ideally negligible with regard to the coherence standard deviation σ∆ϕ,γ

(see section 6.3).

• The results are spatially incontinuous except for larger coherent areas. The condition
of spatial continuity should be more stressed, e.g. taking more points in a different
distance (using weights) into account is suggested. It is practically useless to perform
adjustment for points where no a priori unwrapping errors are known.

• Another results may be achieved from a different track (where data are already
delivered), or from an ascending track, allowing even to compute the deformations
in the individual components, not just in the radar line of sight. This is theoretically
possible even in the case of processing two neighbouring tracks – however, numerical
instabilities are very probable here.
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• In this thesis, the DEM error was estimated preliminarily and was not a part of the
adjustment, as suggested in section 8.8. We suggest to perform the adjustment with-
out the DEM error corrected, and also with its estimation during the adjustment,
and to compare the results.

• The release method should be adapted in order to work also in the case when the
cycle conditions are fulfilled for the initial solution – it allows to find other solution
with the cycle conditions fulfilled with smaller m0. In addition, the release method
should be adapted in order to work also with the velocity model.

• Another suggestion for improvements in the deformation model is to estimate the at-
mospheric influence after adjustment, its elimination and to repeat the adjustment,
together with unwrapping error correction. On the other hand, the atmospheric
influence is expected to be small due to the fact that the interferograms were refer-
enced to a single point and atmospheric influence is assumed to change only slowly
in space (see section 9.4).
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Figure A.1: Coherence with regard to the temporal and perpendicular baselines for the
Ervěnice area for interferograms created from the scenes 23428, 3755 and 24430.



145

w.r.t. temporal baseline w.r.t. perpendicular baseline
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Figure A.2: Coherence with regard to the temporal and perpendicular baselines for the
Ervěnice area for interferograms created from the scenes 4757, 25432 amd 5759.
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Figure A.3: Coherence with regard to the temporal and perpendicular baselines for the
Ervěnice area for interferograms created from the scenes 25933, 9266 and 9767.
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w.r.t. temporal baseline w.r.t. perpendicular baseline
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Figure A.4: Coherence with regard to the temporal and perpendicular baselines for the
Ervěnice area for interferograms created from the scenes 10268, 11771 and 12773.
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Figure A.5: Coherence with regard to the temporal and perpendicular baselines for the
Ervěnice area for interferograms created from the scenes 14777, 15278 and 15779.
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w.r.t. temporal baseline w.r.t. perpendicular baseline
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Figure A.6: Coherence with regard to the temporal and perpendicular baselines for the
Ervěnice area for interferograms created from the scenes 16280, 17282 and 40963.
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w.r.t. temporal baseline w.r.t. perpendicular baseline
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Figure A.7: Coherence with regard to the temporal and perpendicular baselines for the
Ervěnice area for interferograms created from the scenes 23294, 43468, 23795.
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w.r.t. temporal baseline w.r.t. perpendicular baseline
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Figure A.8: Coherence with regard to the temporal and perpendicular baselines for the
Ervěnice area for interferograms created from the scenes 26300, 28304 and 29306.
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w.r.t. temporal baseline w.r.t. perpendicular baseline
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Figure A.9: Coherence with regard to the temporal and perpendicular baselines for the
Košt’any area for interferograms created from the scenes 23428, 3755 and 24430.
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w.r.t. temporal baseline w.r.t. perpendicular baseline
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Figure A.10: Coherence with regard to the temporal and perpendicular baselines for the
Košt’any area for interferograms created from the scenes 4757, 25432 and 5759.
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w.r.t. temporal baseline w.r.t. perpendicular baseline
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Figure A.11: Coherence with regard to the temporal and perpendicular baselines for the
Košt’any area for interferograms created from the scenes 25933, 9266 and 9767.
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Figure A.12: Coherence with regard to the temporal and perpendicular baselines for the
Košt’any area for interferograms created from the scenes 10268, 11771 and 12773.
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Figure A.13: Coherence with regard to the temporal and perpendicular baselines for the
Košt’any area for interferograms created from the scenes 14777, 15278 and 15779.
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Figure A.14: Coherence with regard to the temporal and perpendicular baselines for the
Košt’any area for interferograms created from the scenes 16280, 17282 and 40963.
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Figure A.15: Coherence with regard to the temporal and perpendicular baselines for the
Košt’any area for interferograms created from the scenes 23294, 43468 and 23795.
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Figure A.16: Coherence with regard to the temporal and perpendicular baselines for the
Košt’any area for interferograms created from the scenes 26300, 28304 and 29306.



160 APPENDIX A. COHERENCE ANALYSIS



Appendix B

Detailed Results

1996-01-07 1996-01-08 1996-03-17 1996-03-18
(23428) (3755) (24430) (4757)

Figure B.1: Deformation computed for the Ervěnice area – wrapped phase, deformation
model. The deformations are with regard to 1997-03-03 (scene 9767). Scene 25432 (1996-
05-26) was excluded due to high orbit errors, scenes 9266 (1997-01-27) and 29306 (2000-
11-27) were excluded either during the interferogram selection, or during the consistency
check process. Statistical test results were not taken into account for these results. The
scale is imaged in figure B.2, with -150 mm on the left and 150 mm on the right. Not all
the values are in this range – this only applies for the continuous region in the middle of
the coherent area. The values of other pixels cannot be read out of this figure.

Figure B.2: Colorscale. The left and right borders are defined individually for each image.
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1996-05-27 1996-06-30 1997-04-07 1997-07-21
(5759) (25933) (10268) (11771)

1997-09-29 1998-02-16 1998-03-23 1998-04-27
(12773) (14777) (15278) (15779)

Figure B.3: Deformation computed for the Ervěnice area – wrapped phase, deformation
model. The deformations are with regard to 1997-03-03 (scene 9767). Scene 25432 (1996-
05-26) was excluded due to high orbit errors, scenes 9266 (1997-01-27) and 29306 (2000-
11-27) were excluded either during the interferogram selection, or during the consistency
check process. Statistical test results were not taken into account for these results. The
scale is imaged in figure B.2, with -150 mm on the left and 150 mm on the right. Not all
the values are in this range – this only applies for the continuous region in the middle of
the coherent area. The values of other pixels cannot be read out of this figure.
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1998-06-01 1998-08-10 1999-05-16 1999-10-04
(16280) (17282) (40963) (23294)

1999-11-07 1999-11-08 2000-05-01 2000-09-18
(43468) (23795) (26300) (28304)

Figure B.4: Deformation computed for the Ervěnice area – wrapped phase, deformation
model. The deformations are with regard to 1997-03-03 (scene 9767). Scene 25432 (1996-
05-26) was excluded due to high orbit errors, scenes 9266 (1997-01-27) and 29306 (2000-
11-27) were excluded either during the interferogram selection, or during the consistency
check process. Statistical test results were not taken into account for these results. The
scale is imaged in figure B.2, with -150 mm on the left and 150 mm on the right. Not all
the values are in this range – this only applies for the continuous region in the middle of
the coherent area. The values of other pixels cannot be read out of this figure.
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1996-01-07 1996-01-08 1996-03-17 1996-03-18
(23428) (3755) (24430) (4757)

1996-05-27 1996-06-30 1997-04-07 1997-07-21
(5759) (25933) (10268) (11771)

Figure B.5: Deformation computed for the Ervěnice area – unwrapped phase, deformation
model. The deformations are with regard to 1997-03-03 (scene 9767). Scene 25432 (1996-
05-26) was excluded due to high orbit errors, scene 9266 (1997-01-27) was excluded either
during the interferogram selection, or during the consistency check process. Statistical
test results were not taken into account for these results. The scale is imaged in figure
B.2, with -150 mm on the left and 150 mm on the right. Not all the values are in this
range – this only applies for the continuous region in the middle of the coherent area.
The values of other pixels cannot be read out of this figure.
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1997-09-29 1998-02-16 1998-03-23 1998-04-27
(12773) (14777) (15278) (15779)

1998-06-01 1998-08-10 1999-05-16 1999-10-04
(16280) (17282) (40963) (23294)

Figure B.6: Deformation computed for the Ervěnice area – unwrapped phase, deformation
model. The deformations are with regard to 1997-03-03 (scene 9767). Scene 25432 (1996-
05-26) was excluded due to high orbit errors, scene 9266 (1997-01-27) was excluded either
during the interferogram selection, or during the consistency check process. Statistical
test results were not taken into account for these results. The scale is imaged in figure
B.2, with -150 mm on the left and 150 mm on the right. Not all the values are in this
range – this only applies for the continuous region in the middle of the coherent area.
The values of other pixels cannot be read out of this figure.
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1999-11-07 1999-11-08 2000-05-01 2000-09-18
(43468) (23795) (26300) (28304)

2000-11-27
(29306)

Figure B.7: Deformation computed for the Ervěnice area – unwrapped phase, deformation
model. The deformations are with regard to 1997-03-03 (scene 9767). Scene 25432 (1996-
05-26) was excluded due to high orbit errors, scene 9266 (1997-01-27) was excluded either
during the interferogram selection, or during the consistency check process. Statistical
test results were not taken into account for these results. The scale is imaged in figure
B.2, with -150 mm on the left and 150 mm on the right. Not all the values are in this
range – this only applies for the continuous region in the middle of the coherent area.
The values of other pixels cannot be read out of this figure.
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1996-01-07 1996-01-08 1996-03-17 1996-03-18 1996-06-30
(23428) (3755) (24430) (4757) (25933)

1997-03-03 1997-04-07 1997-09-29 1998-02-16 1998-03-23
(9767) (10268) (12773) (14777) (15278)

Figure B.8: Deformation computed for the Košt’any area – wrapped phase, deformation
model. The deformations are with regard to 1997-07-21 (scene 11771). Scene 25432 (1996-
05-26) was excluded due to high orbit errors, scenes 5759 (1996-05-27) and 9266 (1997-
01-27) were excluded either during the interferogram selection, or during the consistency
check process. Statistical test results were not taken into account for these results. The
scale is imaged in figure B.2, with -150 mm on the left and 150 mm on the right. Not all
the values are in this range – this only applies for the continuous region in the middle of
the coherent area. The values of other pixels cannot be read out of this figure.
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1998-04-27 1998-06-01 1998-08-10 1999-05-16 1999-10-04
(15779) (16280) (17282) (40963) (23294)

1999-11-07 1999-11-08 2000-05-01 2000-09-18 2000-11-27
(43468) (23795) (26300) (28304) (29306)

Figure B.9: Deformation computed for the Košt’any area – wrapped phase, deformation
model. The deformations are with regard to 1997-07-21 (scene 11771). Scene 25432 (1996-
05-26) was excluded due to high orbit errors, scenes 5759 (1996-05-27) and 9266 (1997-
01-27) were excluded either during the interferogram selection, or during the consistency
check process. Statistical test results were not taken into account for these results. The
scale is imaged in figure B.2, with -150 mm on the left and 150 mm on the right. Not all
the values are in this range – this only applies for the continuous region in the middle of
the coherent area. The values of other pixels cannot be read out of this figure.
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1996-01-07 1996-01-08 1996-06-30 1997-03-03 1997-04-07
(23428) (3755) (25933) (9767) (10268)

1997-09-29 1998-02-16 1998-03-23 1998-04-27 1998-06-01
(12773) (14777) (15278) (15779) (16280)

Figure B.10: Deformation computed for the Košt’any area – unwrapped phase, defor-
mation model. The deformations are with regard to 1997-07-21 (scene 11771). Scene
25432 (1996-05-26) was excluded due to high orbit errors, scenes 24430 (1996-03-17),
4757 (1996-03-18), 5759 (1996-05-27) and 9266 (1997-01-27) were excluded either during
the interferogram selection, or during the consistency check process. Statistical test re-
sults were not taken into account for these results. The scale is imaged in figure B.2, with
-150 mm on the left and 150 mm on the right. Not all the values are in this range – this
only applies for the continuous region in the middle of the coherent area. The values of
other pixels cannot be read out of this figure.
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1998-08-10 1999-05-16 1999-10-04 1999-11-07
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1999-11-08 2000-05-01 2000-09-18 2000-11-27
(23795) (26300) (28304) (29306)

Figure B.11: Deformation computed for the Košt’any area – unwrapped phase, defor-
mation model. The deformations are with regard to 1997-07-21 (scene 11771). Scene
25432 (1996-05-26) was excluded due to high orbit errors, scenes 24430 (1996-03-17),
4757 (1996-03-18), 5759 (1996-05-27) and 9266 (1997-01-27) were excluded either during
the interferogram selection, or during the consistency check process. Statistical test re-
sults were not taken into account for these results. The scale is imaged in figure B.2, with
-150 mm on the left and 150 mm on the right. Not all the values are in this range – this
only applies for the continuous region in the middle of the coherent area. The values of
other pixels cannot be read out of this figure.


