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použité zdroje.

V Praze 30. května 2005
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Anotace

Diplomová práce se zabývá radarovou interferometríı a chybami drah družic, jejichž data
se použ́ıvaj́ı pro interferometrické účely, tj. ERS-1/2 a ENVISAT. Zabývá se přesnost́ı
drah družic a analyzuje vliv chyb v drahách na interferogramy pro r̊uzné zp̊usoby, jak
vytvořit interferogram (s odečtenou topografíı). Tento vliv je také č́ıselně vyhodnocen.

Kromě toho diplomová práce obsahuje přehled metod na opravu drah družic založených
na reziduálńı fázi interferogramu a analyzuje je.

Abstract

The thesis deals with SAR interferometry and orbit errors of the satellites whose data
are used for interferometric purposes, i.e. ERS-1/2 and ENVISAT. The precision of the
orbits is discussed and the influence of the orbit errors on the interferograms is analysed for
various means of (topography-free) interferogram creation. The influence is also evaluated
numerically.

In addition, various methods for baseline adjustment based on the number of residual
fringes are reviewed and analysed.
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Chapter 1

Introduction

Radar interferometry is one of the methods used in remote sensing. It serves for two
basic applications: digital elevation model (DEM) creation, or deformation (subsidences,
landslides) mapping. However, the interferogram is corrupted by other influences: atmo-
spheric delay or orbit errors. Both of these influences have a long-wave character and
cannot be separated from each other.

The interferogram is created by subtracting the phase of two radar scenes of the same
area. It does not matter if the two scenes are acquired by the same satellite or by
two different satellites. After subtracting the phase of the flat Earth, the interferogram
contains a topographic signal, which is either extracted (for DEM creation) or subtracted
(for deformation mapping applications).

All of these computations depend on the positions of the two satellites. We usually use
precise orbits with accuracy of the order of 10 cm, but it looks like this is not accurate
enough. In addition to the fact that the scene is shifted by more than one hundred
meters, there are residual fringes in interferograms after topography subtraction, which
means that the extracted DEM is sloped.

On the other hand, if we use an external DEM to subtract the topographic signal, it is
often shifted with respect to the interferogram, causing additional errors.

After topography subtraction, the resulting image should be plain-coloured (i.e. the phase
should have the same value in the entire area) except for the places of deformations. In
our applications, this is never the case. The image has some fringes (from half to two,
depending on several factors), which we attribute to orbit errors and atmospheric delay.
These residual fringes should be eliminated in order to get a “correct” interferogram: it
does not matter if they are really caused by an orbit error or by atmospheric delay. We
need to find “correct” orbit positions, which help generate the “correct” interferogram.

Although the residual fringes can be only seen in a “topography-free” interferogram, the
information may be also used for DEM extraction applications, if there is a DEM of the
area available (although scarce or less precise).

The accuracy of precise satellite orbits is different in different directions. The inaccuracy
in each direction may influence the interferogram in a different way.

This thesis is aimed at analysis of the orbit error influence on interferograms. It also
deals with the ways of obtaining the precise orbits and the tracking systems onboard

9



10 CHAPTER 1. INTRODUCTION

ERS-1/2 and ENVISAT satellites. In addition, it also cites some methods of eliminating
the orbit-error influence and procedures for adjusting the orbits.

The orbit error influence can be easily distinguished from deformation influences. How-
ever, the orbit errors make the interferogram look sloped, and the deformation spots often
cannot be recognized.

Therefore, we are not interested much in the influence of orbit error on scene shift; we
would rather like to find the way how to eliminate the “orbital” fringes from the interfer-
ogram, making the deformation spots more easily visible.



Chapter 2

Radar Interferometry

Radar interferometry is a method of processing a pair of radar scenes (either from airplane,
or a satellite) in order to get a digital elevation model (DEM). Besides that, it can be used
for Earth deformation (subsidences, landslides) monitoring or atmosphere monitoring.

For a conventional interferometric processing, two radar scenes are needed. In comparison
to other remote sensing techniques, radar interferometry takes advantage not only of
the magnitude of the signal, but also of the signal phase. While the signal magnitude
corresponds to the reflectivity of the ground, the phase ϕ corresponds to the distance D
between the satellite and the reflector which is

D = n · λ + ϕ
λ

2π
(2.1)

where n is an integer ambiguity and λ is the radar wavelength.

The interferometric processing uses the reflectivity information only for coregistration of
the images; for DEM creation, deformation mapping and exploring the atmosphere, only
the phase information is used.

2.1 Basic Terms

In interferometry, two satellite scenes are used, no matter whether acquired by two satel-
lites or by one satellite in different passes. Let us call one of the scene master and the
other one slave. The results are then related to the master scene.

The distance between the satellites in the moment of acquisiton of the scenes is called
spatial baseline B (it can vary throughout the image, if the satellite tracks are not ex-
actly parallel). The baseline is always perpendicular to the track [28]. We recognize the
perpendicular baseline B⊥ and parallel baseline B‖, i.e. perpendicular and parallel to the
radar ray transmitted towards the Earth.

Let us emphasize here that radar does not acquire the scenes perpendicular to the Earth
surface — the look angle Θ (the angle between the Earth normal and radar ray) is 16 –
21 ◦. This allows the images to have better resolution than they would have in the case
of perpendicular view. On the other hand, incidence angle (Θ + ε) is the angle between

11



12 CHAPTER 2. RADAR INTERFEROMETRY

the Earth normal and radar ray at the place where the ray reaches the ground (see figure
2.1. The difference between the angles ε ≈ 4◦ for ERS.

Earth center

satellite

imaged spot

Θ + ε

Θ

ε

look angle

incidence angle

Figure 2.1: The difference between the look and incidence angle.

Another important term in interferometry is the temporal baseline, i.e. the temporal
difference between acquisitions of the two scenes. The longer the temporal baseline, the
more decorrelated the area may get — water surfaces get decorrelated in fractions of
seconds, forested or otherwise vegetated areas get decorrelated in seconds. Agricultural
fields may get decorrelated in days or weeks (if farmed). Residential areas are the most
stable.

Another important term is the height ambiguity. As mentioned above, the phase value
is ambiguous, and so is the height of the reflector computed out of the phase. Height
ambiguity is the height difference corresponding to one phase fringe, i.e. 2π radians. The
derivation of height ambiguity value will be described in section 2.3.

Let us also mention the resolution of the image. We can resolve two directions: azimuth
direction is parallel to the satellite track, while range direction is perpendicular to it. The
resolution of the acquired scene is approx. 4.5 m in the azimuth direction and 20–30 m
in the range direction. Due to the radar acquisiton geometry, the resolution in the range
direction changes throughout the image, being better at far range.

Because of the dispropotion between the azimuth and range resolution, the image is often
multilooked, i.e. n azimuth pixels with the same range are averaged to form one. Now,
the resolution is approximately same in both direction.

Let us also define that scene (image) line is a line of the pixels having the same azimuth
coordinate, while the range coordinate changes. On the other hand, if we talk of a pixel
coordinate, we mean the range direction pixel number.
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For radar scenes, we need to recognize slant range and ground range. Taking the first
pixel in a line as a reference, the ground range is the distance between the first pixel and
the given pixel measured on the (flat) Earth surface, while the slant range is the difference
between the distance measured to the first pixel and the given pixel from the satellite.

2.2 Steps of Interferometric Processing

Interferometric processing consists of the following steps:

• Image coregistration: A pixel in one image must accurately correspond to a pixel in
the other image, i.e. one image must be shifted and resampled. The offset between
the images is first computed from the known orbits, and then improved by computing
the correlation of many small crops of the images. This is first performed coarsely,
i.e. with the precision of few pixels, and then finely with small crops. To compute
the offsets with accuracy of about 0.1 pixel, the images must be oversampled first.
For image coregistration, image magnitude (terrain reflectivity) is used. The result
of this steps are pairs of the corresponding pixels, i.e. shift vectors.

• Image filtering in the azimuth direction: This is performed between the coarse and
fine coregistration, because the offset known from coarse coregistration (precise to
the order of few pixels) is used. During filtering, the non-overlapping portions of
the spectra are cut off (the scenes may have a different Doppler centroid value).

• Calculation of the coregistration parameters: The offsets obtained in various parts
of the images with different reliability (correlation) are now approximated with a
polynomial function (of a low order). After that, the residues must be computed
and if they are large in an area, the polynomial function must be adjusted.

• Resampling of one of the images: After computing the coefficients of the polynomial
function, the slave scene is resampled.

• Image filtering in the range direction: The spectra of the two scenes do not com-
pletely overlap in the range direction due to slightly different viewing angles of the
two sensors (according to [14]). Range filtering should reduce the noise originating
in this way.

• Interferogram creation: The phases of the two corresponding scenes are then pixel-
wise subtracted (using complex conjugate multiplication):

I(i, j) = S1(i, j) · S2(i, j)
∗ = |S1| |S2| ej(ϕ1−ϕ2) (2.2)

where I(i, j) is the interferogram value of the (i, j) pixel, Sk(i, j) is the complex
value of the master (k = 1) or slave (k = 2) scene (pixel (i, j)). Please note that j
in the exponent denotes the imaginary unit.

• Computation and subtraction of the flat-Earth phase: The phase of the received
signal (i.e. the difference between the received and transmitted signal) is largely
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dependent on the distance between the transmitter/receiver and the reflector. We
want the interferogram phase to be uniform if the imaged area has no topography.
Before flat-Earth subtraction, the interferogram mostly consists of parallel lines in
the azimuth direction; after subtraction, the most distinctive feature in the inter-
ferogram is topography.

• Coherence computation: Coherence is a measure for reliability of the phase in a small
surrounding of a pixel (phase is a random value in a decorrelated area). Complex
coherence is defined (according to [14]) as

γc =
E {S1 · S∗

2}
E {S1 · S∗

1} · E {S2 · S∗
2}

(2.3)

where the E operator is the mean value along a predefined area (e.g. 30 (original
azimuth) by 6 (range) pixels). The real coherence is given by γ̂ = |γc| and its value
determines the quality of the interferogram in that area.

• Phase unwrapping: This is a critical step of the interferometric processing. The
ambiguous phase in the 〈−π, π) interval must be converted to an unambiguous
value, which can be of any real value. The solution is ambiguous in principle,
even if a point with a known phase is defined. This task is easy when the phase
image contains no residues, i.e. wrapped phase differences in the small area of four
neighboring pixels sum to 0 (more details can be found in [11]). For a more practical
view, this condition is approximated by another two conditions:

1. (true) phase differences between neighboring pixels do not exceed the value of
π,

2. the image does not contain noise.

In practice, these conditions are rarely satisfied: even if the slopes are not too
steep, the image is noisy in decorrelated areas (areas with vegetation and water
surfaces). That is why phase unwrapping becomes an optimization problem and its
solution depends largely on the interferogram itself and the method chosen. The
most unreliable case for phase unwrapping is if a scene is divided by a continuous
decorrelated area (e.g.a river) into two (or more) large areas with good coherence:
then, these areas must be processed independently.

More details about phase unwrapping can be found e.g. in [2, 3, 4, 11].

• DEM subtraction: In order to eliminate the topographic signal, an external DEM
may be subtracted. This DEM needs to be radarcoded first (i.e. converted to the
system of radar; after radarcoding it looks like an interferogram without noise and
decorrelated areas) and then subtracted using a formula similar to (2.2). This is
called the two-pass method.

• Differential interferogram creation: The other way to eliminate the topographic
signal from an interferogram is to use an interferogram which is assumed not to
contain deformation signal (for deformation mapping; this interferogram usually has
a short temporal baseline). The topographical interferogram to be subtracted from
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the other one must be first unwrapped and rewrapped to correspond with the other
interferogram (the height ambiguity must be the same). Then, both interferograms
are subtracted using a formula similar to (2.2). If both scene pairs (deformation
and topographic) have a common master scene, the method is called three-pass
interferometry.

• Phase filtering: Without filtering the phase, the interferogram looks very noisy.
Local kernel filters are often used.

• Geocoding: transformation of the (line,pixel,phase) system of the interferogram to a
geographic coordinate system (ϕ, λ, Hel). This can be performed using the satellite
equations and the Doppler centroid of the scene, but this is usually not accurate
enough. Also, at least approximate heights are required, especially in areas of high
altitude or elevation changes. Please note that the interferogram phase contains
only relative values and this is also the case of the heights; this error may be e.g.
corrected by performing the geocoding twice.

Also, tie points may be used for geocoding, but this approach is not implemented
in DORIS software which we use.

2.3 Mathematical Model

B

B

R

α

RM

S
θ

M

S

B

α−θ

Figure 2.2: Mathematical model of radar interferometry, M denotes the satellite acquiring
the master scene, S denotes the satellite acquiring the slave scene. This image was taken
from [14].

The following derivation of the height ambiguity value and flat-Earth phase is taken from
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[14]. The parallel and perpendicular components of baseline can be expressed as (see
figure 2.2)

B‖ = RM −RS = B sin(Θ− α), (2.4)

B⊥ = B cos(Θ− α). (2.5)

Meaning of the symbols used should be clear from figure 2.2. Please note that we only
deal with the plane containing both satellites and the reflector. The phases of a pixel
corresponding to a reflector at the distance RM from the satellite M and at the distance
RS from the satellite S are:

ΦM = −4π

λ
RM + ΦerrM , (2.6)

ΦS = −4π

λ
RS + ΦerrS (2.7)

where ΦerrM , resp. ΦerrS are phase errors due to e.g. atmospheric delay of the radar
signal. The difference between the phases of the master and slave scenes (interferogram
value) is therefore

∆Φ = −4π

λ
(RM −RS) + Φerr = −4π

λ
B sin(Θ− α) + Φerr = ΦE + Φtpg + Φerr (2.8)

where ΦE is the flat-Earth phase

ΦE = −4π

λ
B sin(Θ0 − α), (2.9)

where Θ0 is the look angle for the point on an arbitrary reference surface (this value
changes according to the reference surface), Φtpg contains the topographic signal and Φerr

contains deformation and atmospheric signals.

According to formula (2.8), the topographic influence can be modeled as

Φtpg = −4π

λ
B (sin(Θ0 + dΘ− α)− sin(Θ0 − α)) = −4π

λ
B⊥dΘ, (2.10)

where Θ = Θ0 + dΘ. Here we consider dΘ to be very small, i.e. sin dΘ ≈ dΘ and
cos dΘ ≈ 1.

The height of a point on the Earth surface (above the reference surface) may be derived
according to figure 2.3.

Assuming the interferogram contains only the topography signal, i.e. Φ = Φtpg, the value
of dΘ is according to formula (2.10)

dΘ = −Φ
λ

4π

1

B⊥
, (2.11)



2.3. MATHEMATICAL MODEL 17

RM

M

M
dθ

h

θ0

d

R

ε

θ0+
dθ
2

+ε

Figure 2.3: Height ambiguity derivation

the distance d is (see figure 2.3)

d = RM

√
2
√

1− cos dΘ = 2RM sin
dΘ

2
, (2.12)

and the height h above the reference surface is therefore (see figure 2.3)

h = d sin

(
Θ0 +

dΘ

2
+ ε

)
. (2.13)

By making a few substitutions we get (assuming sin2 dΘ
2
≈ 0 and cos dΘ

2
≈ 1)

h = 2RM sin (Θ0 + ε) sin
dΘ

2
(2.14)

where Θ0 + ε is the incidence angle.

The height ambiguity (i.e. the height difference corresponding to a 2π phase difference)
is using (2.11) and (2.14) and considering sin dΘ

2
≈ dΘ

2

ha = −RM sin (Θ0 + ε)
λ

2

1

B⊥
, (2.15)

which is in accord with, e.g., [12]. However, this is only an approximate value, because
RM also changes with the look angle Θ. In addition, please note that the height ambiguity
changes throughout the image: the length of the perpendicular baseline changes, and so
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does the look angle Θ and the distance to the master satellite RM . However, the height
ambiguity is used for data selection and pair comparison, and it is precise enough for
these applications.

For topography subtraction, we often use another interferogram (which we assume to
contain only topographic signal). Let us call this interferogram a topo interferogram (and
its phase Φtopo) and the other one, which we intend to subtract topography from, a defo
interferogram (its phase is Φdefo). Also, let us suppose that both pairs have the same
master scene (three-pass interferometry), therefore no resampling is neccessary. The topo
interferogram must be unwrapped first and then rewrapped in order to have the same
height ambiguity as the defo interferogram. Then, the phase may be subtracted.

More exactly, we can according to [14] start with defining the deformation phase Φ∆r,
to correspond to the deformation occurred, ∆r (and DEM differences and atmospheric
signal, which can be neglected now)

Φ∆r = −∆r
4π

λ
. (2.16)

and the phase of the deformation interferogram can be written as

Φdefo = Φtopo

B‖defo

B‖topo

+
4π

λ
∆r, (2.17)

but the ”true” parallel baselines are unknown.

On the other hand, according to [14], the phase of the defo interferogram may be written
as (using formula (2.10))

Φdefo = −4π

λ
dΘB⊥defo −

4π

λ
∆r (2.18)

and the phase of the topographic interferogram is expressed by formula (2.10), except
that we would write B⊥topo instead of B⊥. (Please distinguish the index tpg, denoting only
the topographic component of the phase, and the index topo, denoting the phase of the
particular interferogram.) Therefore, the phase of the deformation interferogram (after
subtracting the topographic phase) is

Φ∆r = Φdefo −
B⊥defo

B⊥topo

Φtopo. (2.19)

In other words, the phase of the differential interferogram depends on the baselines of
both pairs. And because both baselines change a little throughout the image, the phase
of the differential interferogram may change, too.

2.4 Applications and requirements

The interferogram (after flat-Earth phase subtraction) contains the following signals:

• topographic signal: corresponds to the actual height of the ground spot (reflector),
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• deformation signal: corresponds to the deformations occurred between the acquisi-
tion of the two scenes,

• atmospheric signal: corresponds to the delay of the signal caused by its pass through
the atmosphere,

• orbit errors influence: the phase changes due to the imprecise satellite positions,

• DEM errors: the difference between the real topography in the moment of acqui-
sition and the available DEM to be subtracted; when using the two-pass method,
also the error of the coregistration between the interferogram and the DEM must
be considered.

Interferometry is often used for DEM creation. In this case, the perpendicular baseline
should be as large as possible, in order to reach a low height ambiguity and therefore a
high height accuracy of the DEM. The upper limit of the spatial baseline is about 2 km;
for such a long spatial baseline, the two scenes may be too different to allow coregistration.
On the other hand, the temporal baseline should be as short as possible in order not to
allow too much decorrelation and deformations.

When used for deformation mapping, the perpendicular baseline should be as short as
possible in order to reduce the topographic signal in the interferogram as much as possi-
ble. Even if the interferogram contains the topographic signal and a DEM must be used
in order to eliminate it, a higher height ambiguity means worse accuracy requirements
for the DEM. The temporal baseline should be long enough to allow the deformations
to occur, but the deformations can’t be too large. (If the deformation slope exceeds 2.8
cm/px, phase unwrapping is very irreliable, and large deformations also cause decorrela-
tion, especially when occuring in the azimuth direction.) An optimal way is to process
a larger set of scenes. There are many ”spots” in an interferogram which need to be
verified in other interferograms or by other method in order to be sure they are caused
by deformation.

Foreign research groups often map deformations after an earthquake; these earthquakes
often occur in a desert, so there are no decorrelated areas there and the deformations
are large enough to produce fringes. Detecting landslides is more difficult, because the
landslides themselves often cause decorrelations and may not be large enough to be visible
in an interferogram.

It is also possible to determine some properties of the atmosphere using radar interferom-
etry. It has been proven (see e.g. [29, 30]) that weather changes (fronts, storms) cause a
great heterogeneity in the signal delay.

For topographic or deformation mapping, data selection is often performed with the pur-
pose to eliminate these effects, i.e. no rain and snow dates are preferred. If there is no
storm (or similar phenomenon) in the mapped area, the atmospheric influence usually has
a ”long-wave” characteristics, i.e. changes slowly in the area (see e.g. [12]).

The atmospheric influence (i.e. delay) depends not only on the weather conditions, but,
according to [13], it also depends considerably on the range, i.e. on the look angle. For
an increasing look angle, the path of the ray through the atmosphere gets longer. The
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atmospheric delay may reach the value of 15 m but the difference between the two acqui-
sition should be lower. This influence is significant in the case of very short perpendicular
baseline and one acquisition performed at night and the other during the day which is
never the case for scenes acquired by the same satellite and at the same track.

Also, the atmospheric delay depends strongly on topography, which should not be signif-
icant in our lowland area of interest.

Let us emphasize here that the orbit errors and atmospheric influences cannot be rec-
ognized from each other: they both mostly have a long-wave character (see [12]). They
should be reduced together, establishing fictive satellite positions which are obtained by
minimizing the number of residual fringes in the interferogram. If we use fictive satellite
positions, artifacts are corrected at the four corners of the image so the worst artifact
occurs close to the center of the image [29].

However, the atmospheric delay influence is independent of the height ambiguity and
according to e.g. [12], it can exceed several fringes. That means that the error of the
extracted DEM could be quite large and can be determined (or eliminated) using equally
distributed tie points. On the other hand, for our application, these errors are not very
significant — we are only interested in the trend of the atmospheric delay within the
scene.

Another important feature of the method is that all measurements are relative. The-
oretically, the phase of the differential interferogram should be zero in the areas of no
deformation, but there are systematic errors influencing the measurements and there-
fore the deformations (or DEM) can be determined only relatively with respect to the
surroundings.

2.5 Problems of the Method

The most important problem of the method is decorrelation. All vegetated areas are
decorrelated due to the fact that their surface changes (the movement of leaves etc.)
are comparable to the radar wavelength. The only possibility is to acquire both scenes
simultaneously, such as in the SRTM mission.

Water surfaces are always decorrelated. The surface moves so quickly that it is impossible
to see it correlated even in the case of simultaneous acquisition of both scenes.

In our area of interest, which is full of open mines, another problem may be ”DEM errors”,
i.e. an old DEM. Also, DEMs from different sources may cause a problem because radar
interferometry (C-band) maps the top of a forest, in comparison to geodetic methods,
which map the ground.

For the case of two-pass interferometry, where an external DEM is used for topography
subtraction, one more problem arises: coregistration of the DEM to the radar system; in
DORIS, the (radarcoded) DEM can only be shifted by an integral number of pixels (in
both directions). I think that this is quite a limitation of the software and may cause
errors, especially in mountainous areas. In addition, the shift can only be figured out
manually or by trial-and-error procedure.
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A little disadvantage of the two-pass method with the use of SRTM DEM is that DORIS
works in the WGS-84 coordinate system and the heights are related to the WGS-84
ellipsoid, while the SRTM DEM is related to the geoid. Fortunately, the difference between
the bodies is neglectable in the areas where the geoid-to-ellipsoid offset is changing only
slowly (i.e. causes only a bias).
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Chapter 3

Satellites and Orbit Accuracy

In order to be usable for SAR interferometry, a satellite must have following features:

• it must carry a synthetic aperture radar (SAR) onboard,

• the satellite’s position must be recorded in the moment of the acquisition of a scene.

For DEM generation, scene pairs with the shortest possible temporal baseline are used.
An ideal case for this application is the tandem mode of the ERS-1 and ERS-2 satellites,
one following the other in 24 hours. On the other hand, scene pairs with a longer temporal
baseline (the actual desired temporal baseline depends on the deformation type) are used
for deformation mapping, and scene pairs from the same satellite are often used here.

For interferometry, the following satellites may be used (more details can be found in
[25]):

• ERS-1 (C-band), launched by European Space Agency (ESA) in 1991, deactivated
in 2000,

• ERS-2 (C-band, the same frequency as ERS-1), launched by ESA in 1995, still
active,

• RADARSAT (C-band), launched by Canadian Space Agency in 1995, still active,

• JERS-1 (L-band), launched by Japan Aerospace Exploration Agency in 1992, deac-
tivated in 1998,

• JERS-2 (L-band), launched by NASDA (now JAXA) in 1999, still active,

• ENVISAT (C-band), launched by ESA in 2002, still active.

Combination of scenes from different satellites (if they are operating on different orbits) is
complicated due to a different incidence angle, often even impossible. It is possible to com-
bine scenes acquired by ERS-1/2 with scenes acquired by ENVISAT although the radar
wavelength is slightly different, but there are requirements with respect to the baseline

23
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length, and coherence behaviour is far different in comparison to conventional interferom-
etry [10, 1]. On the other hand, it is possible to combine the generated interferograms.

Also, it is discouraged to use data from different tracks of the satellites (see [18]) due to
the largely different incidence angle causing different scattering effects influencing both
the signal magnitude and phase.

In our project, we use only the ERS-1/2 scenes acquired in 1998/1999; we also aim to use
ENVISAT scenes in the future.

3.1 Satellite Equipment

This section deals with satellite instruments used for satellite positioning. The only
satellites of our interest are ERS-1/2 and ENVISAT because we do not use and do not
plan to use data from any other satellites. We will omit instruments used for other
purposes than those which are able to improve/verify satellite position information.

The principles of the systems will be described in section 3.3.

3.1.1 ERS-1/2

All satellite instruments on ERS-1/2 are listed e.g. in [23]; we will only provide the
description of the instruments used for satellite position measurements. ERS satellites
have (according to [23]) the following instruments onboard:

• (nadir) radar altimeter — measures the height of the satellite above the terrain
(broke down at ERS-1 in June 1996),

• microwave sounder — measures the water vapour content in the atmosphere, the
measured data are used for radar altimeter measurements corrections,

• precise range and range-rate equipment (PRARE) — a satellite positioning system,
which evaluates the position and velocity of the satellites with respect to up to 4
transponders on the Earth. Unfortunately, the PRARE system on ERS-1 failed
soon after the launch [23],

• laser retro-reflector (LRR) — a reflector on the satellite which reflects laser rays
transmitted from Earth stations. For ERS-1, this instrument provided the only way
to compute its precise orbits for a long time.

3.1.2 ENVISAT

All the instruments onboard ENVISAT are listed e.g. in [7], for satellite positioning the
following ones may be used:

• (nadir) radar altimeter 2 — an enhanced radar altimeter, the precision of the delay
determination is less than a nanosecond,
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• microwave radiometer (MWR) — used for radar altimeter measurements corrections
(similar to the microwave sounder),

• Doppler orbitography and radiopositioning integrated by satellite (DORIS) — pro-
vides velocity measurements utilizing stations on the Earth. The data are used for
precise orbits computations with an accuracy of the order of centimeters,

• laser retro-reflector (LRR) — a reflector on the satellite which reflects laser rays
transmitted from Earth stations.

3.2 Satellite Behaviour and Phases

In this section, basic information about satellite phases of operation for ERS-1/2 and EN-
VISAT is given. It also deals with the satellite instruments availability. ERS-1 operated
in various modes during its life and the data availability and quality depended on it.

3.2.1 ERS-1/2

ERS-1 and ERS-2 are not exactly twins, with ERS-2 carrying one more instrument and at
the time of launch weighing almost 200 kg more than ERS-1. Their altitude is about 780
km, and they are orbiting in nearly circular and sun-synchronous trajectory with 98.5 ◦

inclination. The satellite cycle is 100 minutes long and in 35 days (ERS-1 only in some
phases), the satellite returns back to the same track; therefore, in 35 days, the same area
is imaged again (the total number of tracks is 501). A given place on the Earth is imaged
approximately every three days.

The start and stop dates of the particular phases of the ERS-1 satellite are shown in table
3.1 and are taken from [9, 20, 24]. ERS-2 is in a multi-disciplionary phase all the time
(with repeat cycle of 35 days).

Phase Start date Stop date Repeat cycle

Commissioning Phase July 25th, 1991 December 10th, 1991 3 days
Ice Phase December 28th, 1991 March 30th, 1992 3 days
Roll Tilt Mode April 4th, 1992 April 13th, 1992 3 days
Multidisciplinary Phase April 14th, 1992 December 21st, 1993 35 days
Second Ice Phase December 23rd, 1993 April 10th, 1994 3 days
First Geodetic Phase April 10th, 1994 September 28th, 1994 168 days
Second Geodetic Phase September 28th, 1994 March 21st, 1995 168 days
Tandem Phase March 21st, 1995 June 5th, 1996 35 days
Hibernation (back-up) July 1996 July 1998 35 days
Multidisciplionary phase July 1998 March 2000 35 days

Table 3.1: Start and stop dates of the particular ERS-1 phases.
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Phase description

During the Ice phases, ERS-1 was intended to map Arctic ice coverage with higher fre-
quency, therefore the repeat period is shortened and some tracks are not visited at all.

During the Roll Tilt phase, the SAR acquired data with different look angle (35 ◦). The
satellite had to rotate and the performance of the radar altimeter may have been degraded,
worsening the orbit determination quality.

The 35-day cycle (during the multidisciplinary and tandem phases) has the following
advantages over the 3-day cycle: the entire Earth is covered with SAR images and the
ground altimeter tracks are only 39 km apart (at 60 ◦ latitude), which implies denser
tracks and therefore more chances to adjust the Earth gravity model.

The repeat period of the satellite is heavily influenced by the semi-major axis of the
satellite. Even a small change in the value of the semi-major axis may cause a large
change in the repeat period. The semi-major axis is naturally getting shorter but it can
be changed during a satellite maneuvre.

The first and second geodetic phases have the same features, except that the track of the
second one is shifted in comparison to the first one. The purpose of these phases is to
improve the Earth gravity model using the radar altimeter. SAR operates normally in
these phases, except for the fact that the scenes are shifted a bit with respect to each
other. In addition, SAR scans a different location each time, therefore the combination of
the scenes into iterferometric pairs may be limited due to decorrelation caused by different
incidence angles of the scenes (large perpendicular baseline).

In the tandem phase, both satellites are in the same orbit, ERS-2 following ERS-1 with
24-hour delay. This allows acquisition of the scenes from the same orbit (two scenes
from different orbits are impossible to process in SAR interferometry), with such a short
temporal baseline that almost no deformations had time to occur, atmospheric delay
changed a little and these scenes are better correlated than the pairs with longer temporal
baseline, too. Also, the tandem phase was a unique occasion to improve the knowledge
about the Earth gravity field (will be described in section 3.5).

During the hibernation phase, the system was woken up every 70 days for three days,
allowing to test the system state. However, the satellite has not been tracked by satellite
laser ranging (described in section 3.3) [20].

Limitations and failures

In June 1996, the altimeter on ERS-1 stopped working, and the orbits from satellite laser
ranging are not accurate enough (only ”fast-delivery” orbits are available since that time).

The PRARE system onboard ERS-2 began operating in January 1996.

Data recording system on ERS-2 run out of its capacity in June 2003, therefore after that,
data could only be acquired in the case when a ground station is in a line of sight.

In January 2001, ERS-2 had a problem with gyroscopes and was yawed in comparison
to its correct position. During January 2001, the ERS-2 did not acquire SAR data, but
starting from February 6, when it got back to its orbit, it again started acquiring scenes.
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However, the satellite was yawed and the data had a large value of Doppler centroid until
February 2003, when a new ground station able to compensate for the satellite yaw was
built. Since that time, the data can again be formed into interferometric pairs almost
without limitations.

Usability for SAR interferometry

For SAR interferometry, the data acquired during the Tandem phase are mostly used.
The advantage of it is that the temporal baseline is only 1 day, allowing to create DEM
with quite good coherence.

The disadvantage of the Ice phases is that not the entire area was covered; on the other
hand, the temporal baseline was short enough to provide better coherence.

The disadvantage of the Geodetic phases is that data of the same area are shifted (in
range) and the coherence may be worse due to a different incidence angle.

Data acquired during the Roll Tilt phase should not be used at all due to a different look
angle (especially combinations of data from Roll Tilt phase with other data) and worse
performance of radar altimeter, worsening the precision of the precise orbits.

3.2.2 ENVISAT

The ASAR onboard ENVISAT allows operation in 37 modes (different polarisation, dif-
ferent look angle and different resolution) but it operates in some modes only upon a
requirement.

The ASAR has a different frequency than the SARs on ERS-1/2, which is 5.331 GHz (i.e.
the difference is 31 MHz).

The repeat cycle is 35 days, same as for ERS-1/2, the altitude and incidence angle are
also the same. The only feature to change is the local solar time of the pass of the satellite
above the equator, which is adjusted by half an hour.

But, the ESA catalogue only offers two scenes of the northern Bohemia acquired during
ENVISAT operation. Therefore, at the time being it is impossible to perform interfero-
metric processing of this data: only one interferometric pair is insufficient. We hope that
data availability will get better in the future.

3.3 Satellite Tracking Systems and Their Accuracy

In this section, systems for finding the satellite position are described. They are based on
measuring the distance between a place on the Earth surface and the satellite, eventually
also the radial speed. By combination of more ground stations, all the components of the
position may be obtained.
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3.3.1 SLR

SLR (Satellite Laser Ranging) means measuring the round-trip distance between the
corner reflectors (LRR) on the satellite and ground stations. A laser emits a high-power
short pulse and waits for the reflection (the position of the satellite is approximately
known). The laser cannot penetrate clouds, so the measurements are weather-dependent.

The measured distance must be corrected for the distance between the LRR and the
satellite gravity center, tropospheric delay, atmosperic refraction and satellite aberation.

Some stations observe the distances with less accuracy than others; these observations
must therefore be downweighted when processing all the observations altogether. The
accuracy of one observation ranges from 1 cm to 20 cm [19], depending largely on the
accuracy of the corrections performed.

There are about 80 to 200 SLR observations to be processed daily [19]. There are 24
stations all over the world, 10 of them in Europe. Unfortunately, these 10 station perform
about 57 % of the observations; there are only 3 stations in the southern hemisphere,
performing only 13 % of the observations (the worst case happened in 1992, see [19]).

The problem of this method in comparison to other methods is that the observations
are performed manually, the ground network is scarce and not well-distributed, and that
there may be large gaps betweeen the observations (the longest delay between successive
ERS-1 observations was almost 30 hours). Therefore, the accuracy of the processed orbits
varies a lot. If the observation conditions are good, the accuracy is a few centimeters (i.e.
comparable to other methods).

More details about SLR may be found in [19].

3.3.2 PRARE, DORIS

Both PRARE and DORIS systems are based on measurements of the Doppler shift of
the received (microwave) signal, i.e. both systems are weather-independent (except for
different atmospheric delay). PRARE is an acronym for Precise Range And Range-
rate Equipment, DORIS is an acronym for Doppler Orbitography and Radiopositioning
Integrated by Satellite. The radial speed of a satellite with respect to a ground station is
obtained by applying the Doppler principle, i.e. that the frequency of the received signal
is different from the frequency of the transmitted signal.

In addition to speed measurements, both systems also serve for positioning. This is
obtained by measuring the round-trip time of the signal and also by integrating the
velocity.

There are many stations on the Earth that measure the radial speed of the satellite:
consequently, we can obtain the complete velocity and position vectors in consequence.
The network of stations is better than that for SLR for both systems; however, the network
is better distributed for the DORIS system than for PRARE.

The measured distances need to be corrected for tropospheric and ionospheric delays, and
also for satellite aberation.
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All measurements need to be corrected for the distance between the reference point of the
antenna and the satellite gravity center.

The behaviour of both systems is discussed below.

PRARE

Two continuous signals are transmitted from the satellite to the Earth, one of them is in X-
band, the other in C-band, which allows to correct for ionospheric influence. In addition
to the code, neccessary for distance measurements (similar to GPS), an information is
transmitted.

The time of reception of the two (simultaneously transmitted) signals is recorded at the
ground stations and the processed data are transmitted back to the satellite, as well as
certain meteorologic informations of the station. The ionospheric corrections are applied
later during the processing which is performed on the satellite.

The precision of the PRARE system is about 0.1 mm/s in the velocity and 2.5–6.5 cm in
the position (both are root squared sums) [8].

More details about the PRARE system may be found in [8].

DORIS

The precision in the radial velocity is about 0.4 mm/s, giving better precision of the orbits
than 5 cm in altitude [7].

The signal is transmitted from a ground station and received by the satellite where it is
processed, giving the almost real-time orbits.

Similar to the PRARE system, DORIS operates at two frequencies, one for precise mea-
suring (above 2 GHz), the other for evaluation of the ionospheric correction (about 400
MHz).

More details about the DORIS system may be found e.g. in [6].

3.3.3 Radar Altimeter

Radar altimeter measures the distance between the satellite and the Earth surface: not
only oceans, but also continents and glaciers. However, the altimetric data of vegetated
or built-up areas are useless. Both transmitter and receiver are on the satellite and the
Earth surface serves as a reflector. It is often used for other purposes: Earth gravity
model determination, ice coverage research, oceanographic applications etc.

Only nadir altimeter can be used for orbit determination — the antenna must be oriented
towards the Earth center.

For orbit determination, the radar altimetry data are used only at the ocean tracks.

The altimeter measurements are subject to the following corrections (see e.g. [16]):

• the distance between the reference point of the antenna and satellite gravity center,
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• atmospheric delay — both ionospheric (may be eliminated if the measurements are
performed using different frequencies) and tropospheric (computed with use of an
atmospheric model),

• tidal influence,

• geoid-to-ellipsoid offset,

• sea-surface topography (having a constant and a variable component).

The footprint of the ERS-1/2 and ENVISAT satellites is about 1.7 km wide, and the
effective width of the pulses is about 3 ns (the pulse of length 20 ms is linear frequency-
modulated) [7].

The resolution of the altimeter is about half a meter (in the vertical direction), but it is
about one order of magnitude better over oceans (the sampled reflected signal is fitted
with a model function). The highest accuracy (according to [7]) is 4.5 cm.

Similar to DORIS and PRARE systems, RA-2 altimeter on ENVISAT operates at two
frequencies (Ku-band and S-band), allowing to correct for ionospheric influence, which is
frequency dependent. The altimeter on ERS-1/2 operates at a single frequency.

Two ways of using altimeter data

The fundamental equation of (conventional) satellite altimetry has the form of

r = h + SST (v) + STT (p) + T + N + re, (3.1)

where r is the distance between the Earth center and the satellite, h is the altimeter-
measured distance (corrected for the ionospheric and tropospheric delays and for the
additive system error), SST (v) is the variable component of the sea-surface topography,
SST (p) is the constant component of the sea-surface topography, T is the tidal influence,
N is the ellipsoid-to-geoid offset and re is the ellipsoid radius in the respective point.

Conventional altimetry processes the measured heights corrected for the noticed influences
and may study the ocean currents or ellipsoid-to-geoid offset etc. Cross-over altimetry
evaluates the differences between the measurements in the ascending and descending
tracks in one place, serving to determine Earth-gravity model or variations in sea-surface
topography.

For cross-over altimetry, we may use either data from one satellite, or data from two
satellites and evaluate the cross-over differences between

• the ascending track of the first satellite and the ascending track of the other satellite,
and

• the descending track of the first satellite and the ascending track of the other satel-
lite, and

• the ascending track of the first satellite and the descending track of the other satel-
lite, and
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• the descending track of the first satellite and the descending track of the other
satellite.

The fundamental equation of cross-over altimetry has the form of

ra − rd = ha − hd + SST (va)− SST (vd) + Ta − Td, (3.2)

where index a denotes the ascending track and index d denotes the descending track.
The other terms of formula (3.1) were eliminated by subtraction. Of course, the equation
(3.2) applies for the cross-overs of the ascending and descending tracks and cannot be
used for geoid determination and measuring the constant component of the sea-surface
topography.

The cross-over differences (XDs), as given by (3.2), are a measure of precision of the radial
orbit perturbation. Altimeter data can also be an instrument for orbit determination;
however, all the influences described in (3.1) must be modeled first.

The cross-over altimeter data are often considered to be independent on the conventional
altimeter data, if used for orbit determination or Earth gravity model improvement.

The altimeter data can be used for two purposes (of our interest):

• orbit determination – conventional altimetry,

• gravity field improving – both conventional and cross-over altimetry.

3.4 Orbit Error Characteristics

The orbit may be errorneous in three directions:

• along-track error (”timing” error), i.e. the satellite is on the same track as it should
be, but somewhere else: these errors are not necessary to deal with in radar interfer-
ometry [12] because they are approximately perpendicular to the baseline. However,
the orbit is the least accurate in this direction,

• radial error, i.e. the nadir distance from the satellite to the Earth (i.e. the distance
measured by a nadir altimeter) is errorneous,

• across-track error which is perpendicular to both of the previously defined compo-
nents.

Due to the principles of satellite positioning methods (will be described in section 3.5),
the radial RMS error is the smallest. For DEOS precise orbits, the radial error is said to
be in the order of 5–6 cm, and the across-track error in the order of 15 cm [20].
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3.5 Precise Orbit Determination and Its Accuracy

This section is based on [20, 26, 27].

Precise orbits, unlike predicted or fast-delivery orbits, are available several months later.
In interferometry, this is typically not an obstacle, the data are usually processed long
time after their acquisition. But on the other hand, precision of the orbits is required in
order for the image coregistration to be performed reliably.

The orbits are delivered as a part of the satellite data. However, these are predicted
orbits and their precision is not better than 25 m [5]. For interferometric purposes,
precise satellite orbits are needed.

Precise orbits are obtained by combination of various methods described in the previous
section. However, these instruments do not measure the satellite position all the time
and the position must be interpolated. Therefore, a precise Earth gravity model and a
satellite geometry model need to be used.

The precise orbits are given for arcs about 5.5 days long, 3.5 days apart from each other
(thus, there is a 2 day overlap between the arcs). The orbits are given in CTRS, with
mean IERS pole, altitude is given above the GRS-80 ellipsoid.

There are two basic sources of precise orbits of ERS-1/2 satellites: ESA itself and DEOS
(Department of Earth Observation and Space systems at TU Delft). The radial error of
the ESA precise orbits is estimated at 8–10 cm, the radial error of the DEOS precise orbits
is estimated at 5–6 cm [5]. The difference between them is caused by different models of
Earth gravity field and satellite geometry used.

We use only the DEOS precise orbits, so this section will deal only with these.

After the failure of ERS-1 altimeter, the orbits are no longer precise, they only have the
status of fast-delivery orbits which are not so accurate (computed only from SLR data).

The precision of fast-delivery orbits is a little worse than that of precise orbits; during
the ERS-2 mission, the difference was only 2 cm in the radial direction and about 8 cm in
the along-track and cross-track directions. This precision is worsened if the satellite has
performed a manoeuvre recently.

3.5.1 Orbit determination

The forces which influence satellite movement can be divided into two categories:

• conservative forces, i.e. the gravitational influence of the Earth (including tides),
Moon, Sun and other planets (mostly negligible). To model these, a precise model
of the gravity of the Earth and other bodies is required. These forces influence the
orbit at most;

• non-conservative forces, of which the most significant are atmospheric drag and solar
radiation pressure. To model these, a precise satellite geometry model (including
orientation) is required. On the other hand, a satellite may contain an instrument
to correct for these in order for the satellite not to be influenced by these forces.
However, this is case of neither ERS-1/2, nor ENVISAT.
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The orbit determination for ERS-1 is difficult with the absence of PRARE. SLR data, as
described in section 3.3, are not well distributed in the orbit and the orbits obtained from
them contain therefore large errors, especially above the southern hemisphere. However,
the SLR data, together with altimeter data, are used for ERS-1 orbit determination.

In 1991, the radial orbit error of ERS-1 was more than a meter, caused by an imprecise
gravity model and inappropriate model of satellite geometry. In 1998, the radial orbit error
of ERS-1 was only about 5 cm. In addition to the improvement of the two models, this
was caused by including the cross-over altimetry data into the precise orbit determination
procedure [26].

Delft Institute for Earth-oriented Space Research (DEOS) tailored Earth gravity model
DGM-E04 (Delft gravity model) in order to cut down the radial orbit error. This model
emanates from the JGM-3 gravity field model. For its construction, single satellite cross-
over data were used, and during the tandem mission, also the dual-satellite cross-over
data between ERS-1 and ERS-2. The model should be the best for satellites on the same
orbit as ERS-1/2, i.e. also for ENVISAT. For testing the model, conventional altimeter
data and ERS/Topex dual satellite cross-overs remain.

Before processing the cross-over altimeter data, the following are omitted:

• if the angle between the ascending and descending track is shallow, or

• if the time interval between the acquisitions is larger than 17.5 days, which is half
of the repeat period of ERS-1/2, or

• if there is an insufficient number of measurements near the cross-over point.

The weight of the radar measurement differs in dependence on geographic location and
sea-surface variability, which is known from previous processing of altimeter data.

3.5.2 Gravity model tailoring

For gravity model tailoring, altimeter data from ERS-1/2 are used. The tandem phase
was most important, allowing to create a large amount of dual-satellite cross-overs to take
into account.

The process of Earth gravity model tailoring has two steps:

• first, the gravity-induced orbit error must be isolated from the error caused by
inappropriate satellite geometry modelling. The influence of gravity is different
from the influence of non-conservative forces;

• second, the gravity model parameters (Stokes’s coefficients) are adjusted in order
to minimize the error.

Lagrange’s planetary equations allow to compute the time-derivatives of each Keplerian
element in dependence on the other Keplerian elements and the gravity perturbations.
The consequence of the equations are described below; for more details, see [17].

According to [17], the following Keplerian elements change (linearly) secularly due to
gravity perturbations:
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• the longitude of the ascending node Ω,

• the argument of perigee ω, and

• mean anomaly M .

Gravity does not cause the other three Keplerian elements (the semi-major axis a, eccen-
tricity e and inclination i) to change secularly.

The secular changes of these are included in orbit computations, other influences are
considered to be orbital perturbations.

The atmospheric drag has a neglectable influence for ERS-1/2 due to the high satellite
altitude, while the solar radiation pressure causes pseudo-secular changes of all Keplerian
elements.

Radial orbit perturbation

The distance between the Earth center of gravity and the satellite r is

r = a (1− e cos E) , (3.3)

where a is the semimajor axis, e is the eccentricity and E is the eccentric anomaly and the
relationship between the eccentric and mean anomaly M (which is a Keplerian element)
is

M = E − e sin E. (3.4)

Radial orbit perturbation is then expressed as a function of the perturbations in Keplerian
parameters [22]

∆r =
∂r

∂a
∆a +

∂r

∂e
∆e +

∂r

∂M
∆M, (3.5)

where ∆ is a symbol for perturbation.

The perturbations in Keplerian elements are computed from the Lagrange’s planetary
equations with use of Stokes’s coefficients of various degrees and orders; some of them are
more significant than others, depending on the orbital parameters, above all the semi-
major axis a, eccentricity e, and inclination i.

As a result, the perturbation ∆r can be expressed as a five-order series, with the pa-
rameters of l, m (degree and order of Stokes’s coefficients), p, q (summing coefficients,
0 ≤ p ≤ l, −∞ < q < ∞) and s, the order of Bessel functions used for approximating
equation (3.3). The expression can be simplified to [26]

∆r =
∞∑
l=1

l∑
m=0

∆rc
lm ±∆rs

lm (3.6)

with
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∆rc
lm = Qc

lm (∆Clm cos mλ + ∆Slm sin mλ) , (3.7)

∆rs
lm = Qs

lm (∆Clm sin mλ−∆Slm cos mλ) , (3.8)

where Qc
lm and Qs

lm are functions of latitude only and further depend on Keplerian pa-
rameters a, e, i [26].

As a result, gravity-induced radial orbit perturbations are partially geographically cor-
related (the perturbation depends not only on the geographical location but also on the
direction of the overpass). That means that part of the perturbation has the same value
for both ascending and descending passes. However, the gravity influence is the same for
all passes of the same direction above a given area.

Papers [22, 26] consider which gravitational coefficients influence the cross-over differences
(XDs). These gravitational coefficients can therefore be adjusted with the knowledge of
cross-over differences, and the value of the XDs is cut down. The other parameters, such
as the zonal coefficients (m = 0), of the gravity models can be adjusted with the help of
satellites on different orbits or by other methods.

DGM-E04 gravity model, which was tailored from the ERS-1/2 altimeter data, was at
first verified in SPOT-2 (has an orbit similar to ERS-1/2) orbit determination application.
The data were compared to DORIS data.

Only 30 % of the ERS-1/2 tandem mission data were used for DGM-E04 tailoring, the
rest was used for its verification.

However, this gravity model should be the optimal for ERS-1/2 and all satellites on the
same or similar orbit.

Orbit accuracy estimation

Precise orbits were compared with SLR data. This allowed measuring of the accuracy in
all directions (not only the radial accuracy). Please note that SLR data have not been
used for DGM-E04 tailoring. In addition to SLR data, cross-over differences were used
for orbit accuracy estimation (only in radial direction).

RMS of SLR residuals is 4.9 cm for DGM-E04, while RMS of XD residuals is 8.1 cm,
approximately equal for ERS-1 and ERS-2 [26]. However, a systematic range bias and
time tag bias can be isolated from altimeter measurements, pressing the residual RMS
down.

The RMS of residuals of ERS-1/Topex cross-over differences is only 3.3 cm, measuring
the accuracy of determinating the geographically fully correlated radial perturbation of
ERS-1 (Topex orbits are considered to be much more accurate than those of ERS-1) [26].
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Chapter 4

Orbit Inaccuracy Influence

First, let us recognize two ways how an orbit error can influence the interferogram:

• the scene is shifted with respect to both reality and the other processed scene; there-
fore, the shift computed from orbit parameters is different from the shift computed
by magnitude image correlation;

• the perpendicular baseline has a wrong value, causing the interferogram to be sloped;
in addition, the wrong value of perpendicular baseline causes a wrong value of height
ambiguity needed for phase-to-height conversion.

In this chapter, we will not consider the scene shift influence, this will be considered later.
This chapter deals with the influence of wrong baseline parameters on the interferogram.

Therefore, let us transfer the problem to the plane containing both satellites and the
imaged place on the Earth. This plane is approximately perpendicular to the satellite
tracks; the tracks are considered to be approximately parallel.

The along-track error (timing error), i.e. the satellite is on the same track as it should be
but somewhere else (after coregistration, this error should not be larger than approx. one
tenth of a pixel, i.e. half a meter) only slopes this plane but the baseline is not changed
significantly. The along-track error may only cause a problem for a very short baseline;
however, we did not meet such a case (for baseline length B = 16 m and along-track error
of 0.5 m, the baseline is lengthened by 8 mm.

We will therefore need only a two-dimensional orbit error, considering in accord with [12]
only the radial and across-track components.

In addition, the absolute orbit errors are not as important as the relative ones, i.e. the
baseline errors. That means that an inaccurate Earth gravity model does not influence the
interferogram as much as an imprecise satellite geometry model, causing the atmosperic
drag and solar radiation pressure influences to be incorrectly modeled. The reason for
this is that the satellite is approximately at the same position at the moments of both
acquisitions.

37
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Baseline representation

For baseline inaccuracy influence, we will consider a different baseline representation than
before, illustrated in figure 4.1. Horizontal and vertical components are the same for all
pixels in a single line in the interferogram (in contrast to the parallel and perpendicular
components) and they allow us to consider different accuracy of the radial and across-
track component. Let us note here that the following text only considers the plane defined
by the two satellites and the imaged place on the Earth.

B

Bh

Bv

α

θ

S

M

Figure 4.1: Baseline representation

The formulas for transformation between various baseline representations (parallel – per-
pendicular, horizontal – vertical and baseline legth – baseline orientation) may be found
e.g. in [12]:

Bh = B cos α = B⊥ cos Θ + B‖ sin Θ, (4.1)

Bv = B sin α = B⊥ sin Θ−B‖ cos Θ, (4.2)

α = arctan
Bv

Bh

, (4.3)

B =
√

B2
h + B2

v , (4.4)

B⊥ = Bh cos Θ + Bv sin Θ, (4.5)

B‖ = Bh sin Θ−Bv cos Θ. (4.6)

Let us stress here that the sign of the perpendicular baseline is also important for un-
derstanding the influence and let us define the sign in accord with [12]: B⊥ is positive
whenever satellite S is located to the right of the slant range of satellite M.

Three errorneous values, which can influence the interferogram, are considered:
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• horizontal baseline Bh,

• vertical baseline Bv,

• and radar wavelength λ.

All three of them cause the phase to be erroneous ([5] considers baseline length B, baseline
orientation α and radar wavelength). In this thesis, we will not consider the influence of
an error in radar wavelength, which is considered to change only slowly and therefore to
be constant throughout the scene.

Baseline errors are introduced into the interferogram in the following processing steps:

• flat-Earth phase subtraction,

• topographic phase subtraction, either performed using an external DEM, or the
three-pass method.

Let us assume in the following considerations that the value of the look angle Θ is error-
free. Its value is much more accurate due to the centimeter-scale orbit errors and the
distance between the satellite and the Earth which is more than 800 km.

4.1 Flat-Earth Phase Subtraction

At the beginning, let us consider an Earth surface without topography, i.e. the reference
ellipsoid itself. In this case, Θ = Θ0 in formula (2.8).

The frequency of residual fringes in the range direction is (according to formula (2.8)
where we neglect the error influence Φerr and assume Φtpg = 0)

fr =
d∆Φ

dr
=

d∆Φ

dΘ

dΘ

dr
, (4.7)

where r is the distance (in meters) between the actual resolution cell and the satellite
(slant range). It is a linear function of the position of the pixel in the image. The second
term only represents the reference body, the (approximate) height of the satellite above
it. The first term can be written as (according to formula (2.8))

f =
d∆Φ

dΘ
= −4π

λ
B cos(Θ− α) = −4π

λ
(Bh cos Θ + Bv sin Θ) = −4π

λ
B⊥. (4.8)

The second term may be written as

dΘ

dr
= − cos γ

sin Θ

R

r(R + h)
; (4.9)

meaning of the γ angle is clear from figure 4.2.

It is clear from formula (4.5) that the value of the perpendicular baseline changes from
the near to far range. According to formula (4.5), the sign of the perpendicular baseline



40 CHAPTER 4. ORBIT INACCURACY INFLUENCE
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R+h
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Earth center
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Θ

ε

Figure 4.2: Configuration for derivation of dΘ
dr

.

may also change between the near and far range, although this case is quite improbable.
The configuration is illustrated in figure 4.3.

In the cases a and b of figure 4.3, the frequency of the flat-Earth fringes is almost constant
(i.e. the flat-Earth phase is almost linear). But for case a, the frequency has a different
sign than for the case b. On the other hand, for the case c, the flat-Earth phase does not
change linearly with the change of the look angle Θ and the frequency therefore changes
its sign. The flat-Earth phase is detailed in figure 4.4.

From figure 4.4, it is clear that the flat-Earth phase changes with the change of the look
angle. Fortunately, the look angle only changes by approx. 5 ◦ throughout the scene, and
if the value of baseline orientation α is distant from the values of Θ ± π

2
, the frequency

can be considered almost constant throughout the image. However, this is not the case
for α ≈ Θ± π

2
where the flat-Earth phase changes only slowly and it is useless to compute

fringe frequency (note the range of the look angle in figure 4.4c). However, this is a scarce
case and we have not encountered it yet.

More accurately, the fringe frequency changes throughout the image (the function contains
a cosine). However, scene crops are often processed instead of the entire scene, causing a
smaller error when the first-order terms are neglected.

If a component of the baseline is inaccurate, the flat-Earth phase is different than ex-
pected. The flat-Earth phase, which must be subtracted from an interferogram before
evaluating (or subtracting) the topography, is computed using the known (inaccurate)
baseline parameters by formula (2.9), with the substitution of Θ0 = Θ (for the surface
without topography).
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far range

Θ

M

S

B
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Θ

α

MS B

Θ

α

near range
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M

S

a. b. c.
Θfr − π

2
< α < Θnr + π

2
, Θfr + π

2
< α < Θnr − π

2
, Θnr + π

2
< α < Θfr + π

2
or

Θnr − π
2

< α < Θfr − π
2
,

B⊥ > 0 B⊥ < 0 either B⊥ > 0 or B⊥ < 0,
depending on pixel position.

Figure 4.3: Baseline configuration with respect to the look angle. This figure is taken
from [12].

When subtracting an inaccurate flat-Earth phase, some of the flat-Earth fringes stay in
the interferogram: we will call these the residual fringes and label their frequency df . The
value df = 1 means that the residual phase dΦ changes by 1 rad when the look angle Θ
changes by 1 rad.

Let Bh and Bv be the real baseline components, and let Bhr = Bh + dBh and Bvr =
Bv +dBv, B‖r = B‖+dB‖ be the reference baseline components, used for flat-Earth phase
computation. Then, using formulas (2.8) and (2.9), we get the phase of the interferogram
with the flat-Earth phase subtracted:

∆Φ− ΦE = −4π

λ
(B‖ −B‖r), (4.10)

∆Φ− ΦE =
4π

λ
(dBh sin Θ− dBv cos Θ) . (4.11)

The residual fringe frequency df (which should be 0 ideally) is therefore

df =
d(∆Φ− ΦE)

dΘ
=

4π

λ
(dBh cos Θ + dBv sin Θ) =

4π

λ
dB⊥. (4.12)

where dB⊥ is the perpendicular (with respect to the radar ray) component of the error
baseline vector. The situation is illustrated in figure 4.5.

Formula (4.12) suggests that the residual fringe frequency does not depend on the baseline
itself, but only on the perpendicular baseline error vector dB⊥. That means that the
residual phase depends on the error baseline orientation angle β in the same way as the
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Figure 4.4: The (wrapped) flat-Earth phase for various orientation angles α and baseline
length B = 50 m. To be more illustrative, the look angle Θ varies in the interval of
〈16.0 ◦; 16.2 ◦〉 for the cases a, b, and 〈16.0 ◦; 22.0 ◦〉 for the case c. This figure is taken
from [12].
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Figure 4.5: The baseline and its error.

flat-Earth phase itself depends on α (see figure 4.4). However, the orientation of the
baseline error is never known and therefore the form of the residual phase or the number
of fringes cannot be evaluated in advance.

The function of the frequency as dependent on the slant range r may be found in figure 4.6
for various values of the error baseline orientation β and dB = 16.2 cm (will be explained
later). The function is valid for Earth approximation by sphere (R = 6380 km, h = 800
km).

From figure 4.6, it can be seen that the frequency change is the fastest for the worst case
(baseline is perpendicular to the ray) and is only small for the best case (the baseline
is parallel to the ray). We can conclude that the frequency changes almost linearly
throughout the interferogram; that means that the phase depends on the slant range
quadratically.

4.2 Flat-Earth Phase in the 3-pass Method

Although section 4.1 dealt with the flat-Earth phase subtraction in an interferogram
without topography, the same applies to the interferogram in which the topography is
subtracted with the use of an external DEM (two-pass method). This section deals with
the case where the topography is subtracted using three-pass method. However, we will
only deal with the flat-Earth phase.

Again, let us consider an interferogram where there is no topography; however, we will
subtract it.

The residual phase of the defo interferogram is according to (4.10)
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Figure 4.6: The residual fringe frequency as dependent on the slant range for different
values of error baseline orientation; dB = 22.8 cm. For all functions, 16 ◦ ≤ Θ ≤ 21 ◦ (the
entire scene).

Φdefo = −4π

λ
(B‖defo −B‖rdefo) =

4π

λ
(dBhdefo sin Θ− dBvdefo cos Θ) , (4.13)
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and the residual phase of the topo interferogram is

Φtopo = −4π

λ
(B‖topo −B‖rtopo) =

4π

λ
(dBhtopo sin Θ− dBvtopo cos Θ) . (4.14)

According to (2.19), the phase of the differential interferogram is

Φ∆r = Φdefo − prΦtopo, (4.15)

where pr =
B⊥rdefo

B⊥rtopo
, while p =

B⊥defo

B⊥topo
. The residual phase of the differential interferogram

is then

dΦ∆r = dΦdefo − prdΦtopo, (4.16)

If the perpendicular baselines of both pairs are large enough so that dB⊥ � B⊥, and the
ratios dB⊥

B⊥
can be neglected for both pairs, formula (4.16) may be rewritten as

dΦ∆r = dΦdefo − pdΦtopo. (4.17)

We will not consider the case of such a small perpendicular baseline, for which this formula
cannot be used.

The frequency of residual fringes therefore is

df3−pass =
dΦ∆r

dΘ
= fdefo − pftopo. (4.18)

4.3 Topographic Phase Subtraction – 2-pass Method

The topographic phase to be subtracted (in the case of external DEM) can be figured out
using formulas (2.11) and (2.14) (the function is almost linear):

dΦ

dh
= −4π

λ
B⊥

1

RM sin(Θ + ε)
. (4.19)

Now, we will again analyze the influence of imprecise orbits and DEM errors on the
interferogram. The procedure will be similar to the case of the flat-Earth phase: for
topography subtraction, the Bhr = Bh + dBh and Bvr = Bv + dBv baseline parameters
are used. Also, the difference between the real height h above the reference surface and
the DEM height hr = h + dh are considered.

The real topographic phase is (according to (4.19))

Φtpg = −4π

λ
(Bh cos Θ + Bv sin Θ)

1

sin(Θ + ε)RM

h, (4.20)

and the reference topographic phase (to be subtracted) is
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Φtpgr = −4π

λ
((Bh + dBh) cos Θ + (Bv + dBv) sin Θ)

1

sin(Θ + ε)(RM + dRM)
(h + dh).

(4.21)
The residual phase therefore is

dΦtpg =
4π

λ

1

sin(Θ + ε)RM

(
(B⊥

(
dh− dRM

RM

h

)
+ dBh cos Θh + dBv sin Θh

)
(4.22)

with the assumption 1
1+x

≈ 1 − x for x � 1 and neglecting the second and higher order
terms.

The term of formula (4.22) containing dh represents the DEM error, and the other terms
include the orbit error influence: the higher the point above the reference ellipsoid, the
more the phase is influenced.

In formula (4.22), dRM is a function of dBv and dBh and should be accounted for together
with other influences; however, the ratio dRM

RM
is very small and we will therefore neglect

it.

4.4 Topographic Phase Subtraction — 3-pass Method

Now, we will consider the deformation and topographic interferograms, as described in
section 2.3. Both interferograms have the flat-Earth phase subtracted and we consider
the case that no deformations occured, i.e. ∆r = 0.

The phase of the differential interferogram is (according to formula (2.19))

Φdif = Φdefo −
Bhrdefo cos Θ + Bvrdefo sin Θ

Bhrtopo cos Θ + Bvrtopo sin Θ
Φtopo = Φdefo − prΦtopo, (4.23)

where index r again means the reference baseline components. Considering Bhri = Bhi +
dBhi and Bvri = Bvi + dBvi where i can be “defo” or “topo”, we can write according to
formula (2.10)

Φdif =
4π

λ
dΘ [dBhdefo cos Θ + dBvdefo sin Θ− p (dBhtopo cos Θ + dBvtopo sin Θ)] (4.24)

where again

p =
B⊥defo

B⊥topo

(4.25)

and with the assumption of 1
1+x

≈ 1 − x for x � 1 and neglection of second and higher
order terms. Using formulae (2.14) and (2.11) we can write (with the approximation
sin dΘ = dΘ)
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Φdif =
4π

λ

h

RM sin(Θ + ε)
[dBhdefo cos Θ + dBvdefo sin Θ− p (dBhtopo cos Θ + dBvtopo sin Θ) .]

(4.26)

In this formula, the term containg dRM

RM
should appear; however, it is neglected due to the

same reason as before.

This formula suggests that, the shorter the deformation baseline and the longer the to-
pographic baseline, the less the interferogram is influenced by baseline errors of the topo-
graphic pair. On the other hand, the deformation baseline errors remain the same.

4.5 Evaluation of the Influences

We will now evaluate the influence of the orbit errors on various interferograms. We will
consider the satellite radial orbit error of σr = 6 cm and the across-track error of σa = 15
cm (see section 3.4) and we will use real values of baseline components. These values were
computed by the DORIS software and are shown in table 4.1.

In the following text, we will consider the baseline errors of

σBh
=
√

2σa = 21 cm, (4.27)

σBv =
√

2σr = 8.5 cm. (4.28)

The radar wavelength is λ = 5.67 cm.

In the following text, we will try to evaluate the RMS influence, i.e. the RMS frequency
of residual fringes or the RMS residual phase of a differential interferogram. We will
consider the baseline component errors dBh and dBv to be independent. However, this
assumption is not true, but no covariance matrix of the orbit errors is available.

In addition, the orbit error (in all directions) contains, besides the random component,
also a systematic component. Unfortunately, we do not know much about the rate of
these components and we will assume (in accord with [12]) the orbit error to contain the
random component only (the worst case for baseline accuracy).

4.5.1 Flat-Earth phase influence

Let us transfer the formula (4.12) to the RMS:

σf =
4π

λ

√
σ2

Bh
cos2 Θ + σ2

Bv
sin2 Θ. (4.29)

The evaluation of the flat-Earth phase influence computed according to formula (4.29) is
summarized in table 4.2. First, both the terms are separated in order to find out which
term influences larger error, and then they are summed up.
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topo pair defo pair 1 defo pair 2

baseline length B[m] 120.4 98.7 42.8
baseline length change (absolute) [m] 2.0 2.3 3.7
baseline orientation α[◦] -5.3 13.2 130.4
baseline orientation change (absolute) [◦] 0.005 0.27 3.5
horizontal baseline Bh[m] 119.9 96.1 -29.3
vertical baseline Bv[m] -11.3 22.5 31.8
horizontal baseline change (absolute) [m] 2.0 2.3 7.4
vertical baseline change (absolute) [m] 0.1 0.0 1.8
perpendicular baseline B⊥[m] 110 98.3 -15.9
parallel baseline B‖[m] 49 9.3 -39.6
look angle (scene center) Θ[◦] 18.6 18.6 18.5
height ambiguity ha[m] 69 77.2 -471.3

Table 4.1: Baseline parameters for the available data. Baseline component values (ex-
cept for changes) are related to the scene center. Baseline component changes are the
differences at the time of acquisition of the first and last azimuth lines. (The baseline
parameters change approximately linearly in time. There are approximately 30 points for
the entire scene among which the position is interpolated.) The different look angle for
the deformation pair 2 is probably caused by the fact that its master scene is acquired by
ERS-1, while the master scene of the other two pairs is acquired by ERS-2.

all pairs

σBh
term [rad/rad] 44.6

σBv term [rad/rad] 5.4
total σf [rad/rad] 44.9

Table 4.2: The RMS of the residual fringe frequency σf after subtraction of the flat-Earth
phase in a flat area. The RMS of the residual fringe frequency is independent of the
perpendicular baseline, it only depends on the baseline errors.

However, this approach does not consider the dependence of the frequency of residual
fringes on the baseline error orientation angle β (see figure 4.5). In formula (4.29), the
angle β is implicit, coming from the expected accuracy of the individual components. The
situation is illustrated in figure 4.7.

However, assessing the ”worst-case” fringe frequency is not straightforward. Formula
(4.12) suggests that the longer the perpendicular baseline error, the more residual fringes
appear in the interferogram, and that the residual fringe frequency does not depend on
any other parameter.

Formula (4.29) does not consider the error baseline orientation at all. It supposes the
horizontal component to be approximately three times larger than the vertical one, but
that does not respect the value of dB⊥. The situation is illustrated in figure 4.7; the angle
γ denotes the “implicit” RMS orientation of the error baseline vector.

However, the look angle Θ ≈ 18.5 ◦ is similar to the “implicit” orientation angle γ ≈ 21.8 ◦.
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Figure 4.7: ”Implicit” orientation of the error vector, γ ≈ 22 ◦. Please note that the γ
angle may be from the horizontal line both up and down, and also on the left side.

The “maximum RMS perpendicular baseline” (not illustrated in the image because it is
very similar to σB⊥) is

σB⊥max =
√

σ2
Bh

cos2 Θ + σ2
Bv

sin2 Θ = 20.1 cm, (4.30)

corresponding to the maximal RMS fringe frequency

σf =
4π

λ
dB⊥ = 44.5 rad/rad. (4.31)

This is the worst case, very similar to the one evaluated using (4.29), due to the similarity
of the angles γ and Θ. The best case is for β ≈ Θ where the residual phase looks similar
to the one illustrated in figure 4.4c.

Let us conclude here that the number of residual fringes does not depend on the baseline
length and orientation (see formula (4.12)), but it only depends on the actual baseline
errors.

According to figure 4.6, the RMS number of fringes (considering the worst-case error
baseline orientation) in a scene is about three quarters (≈ 4.8 rad) — scene width is
approx. 30 km in slant range (see e.g. figure 4.6).

4.5.2 Flat-Earth phase subtraction – 3-pass method

Formula (4.18) cannot be transfered to RMS directly because of the interdependence of
the baseline errors of the topo and defo pairs.

Let us suppose that the topo pair was acquired in the passes numbered 1 and 2, while
the defo pair was acquired in passes numbered 1 and 3 (the pairs have common master).
The ependence may be written as:
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dBvdefo = dr3 − dr1, (4.32)

dBvtopo = dr2 − dr1, (4.33)

dBhdefo = da3 − da1, (4.34)

dBhtopo = da2 − da1, (4.35)

where dr is the symbol for the radial orbit error, da is the symbol for the across-track
error and the indices 1, 2, 3 denote the pass of the satellite.

That means that the RMS version of formula (4.17) looks like

σf3−pass =
4π

λ

√
σ2

a1
t2a1

+ σ2
a2

t2a2
+ σ2

a3
t2a3

+ σ2
r1

t2r1
+ σ2

r2
t2r2

+ σ2
r3

t2r3
, (4.36)

where

ta1 = (p− 1) cos Θ, (4.37)

ta2 = −p cos Θ, (4.38)

ta3 = cos Θ, (4.39)

tr1 = (1− p) sin Θ, (4.40)

tr2 = p sin Θ, (4.41)

tr3 = − sin Θ. (4.42)

Assuming the same RMS orbit errors for all scenes, formula (4.36) can be rewritten as

σf3−pass =
4π

λ

√
2(p2 − p + 1)

(
σ2

a cos2 Θ + σ2
r sin2 Θ

)
. (4.43)

Formula (4.43) suggests that the inaccuratelly subtracted flat-Earth phase can be partly
eliminated by the 3-pass method. However, this applies only for the case where 0 ≤ p ≤ 1.

The evaluation of the flat-Earth phase influence computed according to formula (4.36) is
summarized in table 4.3.

Here we subtract the topo interferogram from each of the defo interferograms.

Table 4.3 suggests that the residual fringe frequency is much more caused by the across-
track orbit error than by the radial one, similar to the last case. In comparison to table
4.2, it also suggests that the baseline error influence gets worse with another interferogram
subtraction, especially in the case when the perpendicular baselines have different sign.

Same as in the last case, table 4.3 does not consider the orientation of the error baseline,
i.e. considers the ”implicit” orientation of both error baselines. As found out in section
4.5.1, this case is similar to the worst case for one interferogram.

However, the error may be larger when one of the error baselines is oriented in a different
direction. In the worst case, when one error baseline is oriented in the “best” direction
and the other in the “worst” one, the influence may be twice as large.
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defo pair 1 − topo pair defo pair 2 − topo pair

p 0.89 -0.14
σa1 term [rad/rad] 3.55 35.90
σa2 term [rad/rad] 28.15 4.43
σa3 term [rad/rad] 31.47 31.47
σr1 term [rad/rad] 0.44 3.99
σr2 term [rad/rad] 3.10 0.44
σr3 term [rad/rad] 3.55 3.54

total σf3−pass [rad/rad] 42.55 48.32

Table 4.3: Residual fringe frequency due to baseline errors, caused by inaccurate flat-Earth
phase subtraction in 3-pass method. All the values are absolute.

4.5.3 Topographic phase subtraction – 2-pass method

Let us transfer formula (4.22) to RMS (with neglection of the dRM error which was
discussed above):

σΦ =
4π

λ

1

sin(Θ + ε)RM

√
B2
⊥σ2

h + cos2 Θh2σ2
Bh

+ sin2 Θh2σ2
Bv

; (4.44)

here we also assume that the DEM error dh is independent of the orbit errors dBh and
dBv, which is true because the DEM was not used for orbit determination.

The evaluation of the topographic phase influence computed according to formula (4.44)
is summarized in table 4.4.

Here we also consider h = 1000 m and σh = 10 m (which is approximately the accuracy
of the SRTM DEM, which we use), RM ≈ 830 km (at the scene center) and Θ + ε ≈ 23 ◦.

However, the height error RMS σh depends on the DEM used: we use an interferometric
DEM (acquired in X and C bands) which should be the most suitable one for interfer-
ometric applications (although it may contain errors due to errors in phase unwrapping
etc.). In the case of using a DEM measured by geodetic methods, the errors should be
larger because the geodetic methods measure the Earth surface, while the interferometry
(in C band) considers e.g. the tree-tops in vegetated areas.

topo pair defo pair 1 defo pair 2

σh term [rad] 0.75 0.67 0.11
σBh

term [rad] 0.14 0.14 0.14
σBv term [rad] 0.02 0.02 0.02
total [rad] 0.76 0.68 0.18

Table 4.4: The interferogram phase error due to baseline errors, caused by inaccurate
subtraction of the external DEM phase.

The subtraction of the topographic phase with an inaccurate baseline parameters also
causes a trend in the range direction, but this trend is very small, less than one hundreth
of the trend evaluated for the flat-Earth phase. Therefore, we will not evaluate it here.
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As seen from table 4.4, the DEM error influences the residual phase much more than orbit
errors, and also that the interferogram is more influenced by the across-track error than
by the radial error. The reason for this is the value of the look angle Θ, which allows to
transfer more of the across-track error than the radial error to the perpendicular baseline
error. Only for a short perpendicular baseline (16 m) is the residual phase due to the
DEM error smaller than the residual phase due to the orbit error.

The DEM error influence can be reduced easily during data selection: the shorter the
baseline, the less the interferogram is influenced by the DEM error. This is usually the
requirement for deformation mapping.

4.5.4 Topographic phase subtraction – 3-pass method

This case is similar to that analysed in section 4.5.2. That means that we must first
transfer the baseline errors to the orbit errors of the individual passes.

The RMS version of formula (4.26) looks like
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=
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t2r2

+ σ2
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t2r3
, (4.45)

where

ta1 = (p− 1) cos Θ, (4.46)

ta2 = −p cos Θ, (4.47)

ta3 = cos Θ, (4.48)

tr1 = (p− 1) sin Θ, (4.49)

tr2 = −p sin Θ, (4.50)

tr3 = sin Θ. (4.51)

The formula (4.45) can be simplified assuming the same RMS orbit errors for all scenes,
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=
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√
2(p2 − p + 1)
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σ2

a cos2 Θ + σ2
r sin2 Θ

)
. (4.52)

The evaluation of the topographic phase influence computed according to formula (4.45)
is summarized in table 4.5.

Here we also consider h = 1000 m, RM ≈ 830 km (scene center) and Θ + ε ≈ 23 ◦.

We subtract the topo interferogram from each of the defo interferograms.

The baseline inaccuracy also causes trend in the range direction, but this trend is very
small, less than one hundreth of the trend evaluated for the flat-Earth phase. Therefore,
we will not consider it here.
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defo pair 1 − topo pair defo pair 2 − topo pair

p 0.89 -0.14
σa1 term [rad] 0.01 0.11
σa2 term [rad] 0.09 0.01
σa3 term [rad] 0.10 0.10
σr1 term [rad] 0.001 0.015
σr2 term [rad] 0.011 0.002
σr3 term [rad] 0.013 0.013

total [rad] 0.14 0.15

Table 4.5: The interferogram phase error due to baseline errors, caused by inaccurate
subtraction of the topographic interferogram.

4.5.5 Comparison and conclusion

In the tables 4.2, 4.4 a 4.5, it can be seen that the influence of orbit errors caused by
imprecise topography subtraction is small in comparison to imprecisely subtracted flat-
Earth phase (let us remind that the topographic errors were computed for h = 1000 m,
for smaller heights the error influence is even less). In addition, the three-pass method is
more accurate because the errors originating from DEM errors are eliminated and also,
there is no coregistration needed. But this only applies for the case where 0 ≤ p ≤ 1.

In the opposite case, i.e. when the topographic baseline is shorter than the deformation
baseline, the topographic heights are determined less accurately, compared to the accuracy
used for topography subtraction. In this case, the term p2 − p + 1 of formula (4.52) gets
large and the accuracy worsens. The same applies for the case where defo and topo
perpendicular baselines have different signs.

Let us add here that the residual phase errors (due to topography subtraction) cannot be
determined in a real interferogram; however, a trend in the interferogram can be usually
seen (sometimes, this trend causes real fringes if the errors are larger) and their presence
can be used to correct the baseline. Another computation with the “right” baseline should
eliminate the errors dependent on topography, too.

In practice, however, the relative heights are more important than the absolute ones: the
orbit error only “scales” the heights. In a smooth terrain, this should not cause a problem.

Let us note here that most of the baseline errors do not depend on the baseline length
and orientation, and therefore the influence cannot be eliminated by appropriate data
selection. The only advice is to choose data with a short perpendicular baseline for
deformation mapping using two-pass interferometry, or a short perpendicular baseline of
the deformation pair and long perpendicular baseline of the topographic pair in case of
three-pass interferometry.

4.6 Fringes in the azimuth direction

Fringes in the azimuth direction are not fringes themselves, but only a change of range
fringe frequency during the image acquisition. That means that they are caused by
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variability of orbit errors during the pass of the satellite.

These are usually not as large as the errors in the range direction; the orbit error does
not usually change quickly — it contains a systematic error (for such a short period of
time). However, the error characteristics are not known.

4.7 Atmospheric fringes

The fringes need not be caused only by orbit errors: they can also be caused by a difference
in atmospheric delay in different parts of the image. Let us avoid the cases where a front
edge appears in the image or when a storm occurs during scene acquisition. In the other
cases, the atmospheric delay changes slowly (see [12]) and cannot be distinguished from
the influence of orbit errors.

The change of atmospheric features may occur in both directions with the same proba-
bility; however, atmospheric fringes appear more probably in the range direction. This is
caused by the different path length through the atmosphere at close and far range (see
[13]).

Because both influences (orbital and atmospheric) cannot be usually distinguished in
an interferogram, they are eliminated together. Rather than seeking for the “correct”
baseline, an artificial baseline resulting in an interferogram without residual fringes is
determined [29].



Chapter 5

Error-influenced Interferograms

This chapter analyses the influence of orbit errors on real interferograms. It deals not
only with the interferogram slope, but also with the shift of the scenes with respect to
each other and with the shift of the interferogram (i.e. of the master scene) with respect
to SRTM DEM.

The interferometric pairs, described in table 4.1 – topo pair, defo pair 1 and defo pair 2,
are formed by three scenes, and their acquisition parameters are shown in table 5.1.

pair master acquisition date master sat. slave acquisition date slave sat.

topo March 8th, 1999 ERS-2 March 7th, 1999 ERS-1
defo 1 March 8th, 1999 ERS-2 December 28th, 1998 ERS-2
defo 2 March 7th, 1999 ERS-1 December 28th, 1998 ERS-2

Table 5.1: Particular scenes used for each pair as described in chapter 4. More details
about the pairs can be found in table 4.1.

5.1 Scene shift

An easily recognized error is the shift between the two scenes, processed into an inter-
ferogram. It is natural that two scenes are shifted, but the shift may be computed from
the satellite positions. On the other hand, it can also be evaluated by comparing the
magnitudes of the images (2D correlation). Both procedures are performed in DORIS:
the precise orbits should allow computing the shift with the precision of several tens of
pixels, which is a parameter of the following procedure, allowing to compute the shift with
the precision of 1 to four pixels. In order to get a more precise offset, small crops of the
scene are oversampled and correlated. The differences between the shift computed from
the satellite positions and the magnitude correlation (without oversampling) is shown in
table 5.2.

In table 5.2, one can see that the error of the deformation pair 1 is much smaller than
for the other two pairs. We attribute this to the fact that both the topo and the defo 2
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computation using orbits correlation difference
pair azimuth range azimuth range azimuth range

topo -39 -7 -251 -7 -212 0
defo 1 27 -2 43 -1 16 1
defo 2 66 5 289 5 223 0

Table 5.2: The differences in scene shift computed using precise orbits and image corre-
lation for the processed pairs (using image magnitude). All the values are in pixels. The
values may change by a few pixels depending on the scene crop. The values refer to the
original pixels, no the multilooked ones.

pair contain the ERS-1 scene, while the defo 1 pair contains both ERS-2 scenes (see table
5.1).

Let us also notice that the image position is good in range, but the azimuth position is
errorneous. As described in section 3.4, the along-track (timing) error is the largest of all
the orbit error components.

Although precise orbits are no more available for ERS-1 in 1999 (the orbits used are only
fast-delivery orbits), their error should not be large enough to cause shifts about 1 km.
We attribute this error to a timing bias between ERS-1 and ERS-2.

However, as written above, the scene shift is not significant for interferometry, because
the images are coregistered using image magnitude and cut off in order to contain the
same area.

5.2 Residual fringes

Figures 5.1, 5.2 and 5.3 show the residual fringes caused by inaccurate flat-Earth phase
subtraction (as derived in chapter 4). The topography was either subtracted using the
SRTM DEM (figures 5.1 and 5.2) by two-pass interferometry, or using the topo pair by
three-pass interferometry (figure 5.3). Unfortunately, we were unsuccessful in processing
the defo pair 2 for this large scene (probably due to the large convergence of the orbits,
see table 4.1).

The residual fringe frequency in the range direction is approximately four times larger
than the estimate in table 4.2 (for this scene crop, the RMS worst-case residual frequency
is approximately half a fringe (see section 4.1)). We may also attribute the error to the
larger ERS-1 orbit error (for the topo pair imaged in figure 5.2). However, a similar trend
can also be seen in figure 5.1 where no ERS-1 scene was processed.

We cannot attribute such a large error to atmospheric delay. The criteria for data selection
were very strict, selecting only acquisition dates without rain three days before.

The differential interferogram (figure 5.3), created from the defo 1 and topo pairs, is almost
without residual fringes. Please note that the fringes in the range direction of both defo 1
and topo pairs (figures 5.1 and 5.2) are in the same direction, although the azimuth fringes
are in the opposite direction. After subtraction, range fringes are eliminated except for a
small fraction, but the azimuth fringes add up.
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Figure 5.1: The influence of orbit errors on the interferogram with subtracted topography
using SRTM DEM (defo pair 1, as described in table 4.1). There are more than two
residual fringes in the range direction and less than half a fringe in the azimuth direction.
This interferogram contains 4096 pixels in the range direction and 16384 pixels in the
azimuth direction, i.e. it covers almost a half of the scene.
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Figure 5.2: The influence of orbit errors on the interferogram with subtracted topography
using SRTM DEM (topo pair, as described in table 4.1). There are more than three
residual fringes in the range direction, the azimuthal fringe is minor. This interferogram
contains 4096 pixels in the range direction and 16384 pixels in the azimuth direction, i.e.
it covers almost a half of the scene.
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Figure 5.3: The influence of orbit errors on the interferogram with subtracted topography
using the three-pass method (defo 1 and topo pairs, as described in chapter 4). There
is less than one fringe in both directions, the interferogram looks as if it is sloped. This
interferogram contains 4096 pixels in the range direction and 16384 pixels in the azimuth
direction, i.e. it covers almost a half of the scene.
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5.3 Interferogram shift

In order to subtract the topography from an interferogram with the two-pass method, an
external DEM of the same area must be used. In a flat area, the DEM may be less precise
or even neglected, but in a mountainous area, the DEM must be accurately coregistered
with the interferogram.

First, the DEM is converted to the radar coordinate system, i.e. the distance between the
satellite and the reference point on the Earth surface. The distance is then converted to
phase and wrapped. That means that the converted DEM does not contain any reflectivity
(magnitude) information and therefore regular coregistration, which uses the magnitude
information, cannot be used.

[31] attempts to create an artificial magnitude image with the use of information about
(approximate) satellite positions and terrain slopes (taking advantage of radar artifacts,
such as foreshortening, layover and shadow) and then tries to perform magnitude coregis-
tration with the interferogram (let us remind here that magnitude of the interferogram is
a product of the magnitudes in the individual scenes). However, the artificial magnitude
is different from the natural one except for mountainous areas. The authors conclude that
the coregistration works even in flat areas with elevation differences of less than 100 m.
However, we did not try this approach.

Table 5.3 illustrates the shift of the interferograms with respect to the radarcoded SRTM
DEM. These shifts were obtained manually (comparing the phase images) and then im-
proved by trial-and-error (the DEM phase was subtracted from the interferogram and
the resulting interferogram was compared to the previous iteration). We estimate the
precision of this shift to be about 5 pixels in range direction and 25 pixels in the azimuth
direction (before multilooking).

Let us stress here that the interferogram represents the right values, while the DEM was
radarcoded using the known (imprecise) orbit parameters.

pair azimuth shift range shift

topo -815 70
defo 1 -870 79
defo 2 -1080 87

Table 5.3: The interferogram shift of the various processed pairs with respect to the radar-
coded SRTM DEM. All values are in pixels of the original scene (i.e. not multilooked).
The shift is approximately constant in the whole image. The shift of the defo 2 pair
was evaluated in a different scene crop. In addition, due to a very large value of height
ambiguity for the defo 2 pair, the values for defo 2 are difficult to determine and may
therefore contain an error of at most 10 pixels in range and 100 pixels in azimuth.

Table 5.3 suggests that the shift of the processed interferogram not only depends on
the position of the master satellite, but also on the position of the slave satellite. This
is natural because the DEM is radarcoded using the information about both satellite
positions; however, the most error is caused by the master satellite position error.



Chapter 6

Detrending the Interferograms

In this chapter, we will describe methods to detrend the interferogram. The trend is
caused by the orbit errors, as described in chapters 4 and 5, only the flat-Earth phase
is assumed (the trend caused by imprecise topography subtraction is neglectable). The
simplest approach is to unwrap the residual phase and compute a plane (or quadric) which
is ”as close as possible” to the unwrapped surface, using the selected criteria.

However, this approach may have some problems:

• the decision whether to use all pixels for adjustment, or only those whose coherence
is higher than a threshold;

• there may be a large amount of ”wrong” pixels in the interferogram, causing the
plane to be biased;

• the phase may be unwrapped incorrectly due to continuous low-coherent patches;

• plane subtraction is not exact (see figure 4.6).

The third problem is the most important: although we can make various decisions re-
garding the coherence of the points which are to be the adjustment input, there is no
possibility to influence phase unwrapping. The SNAPHU program, which we use, is very
good in unwrapping topographic surfaces (it also uses scene magnitude as an information
source) but deformation interferograms are unwrapped without any apriori information;
therefore, errors occur more often. Phase unwrapping is the least reliable step of the
interferometric processing.

6.1 The cpxdetrend script

The cpxdetrend script is provided by the DEOS group at the Delft University of Tech-
nology as a supplement to the DORIS software. However, it is a script to be run in the
MATLAB environment.

First, it tries to compute the number of fringes in both x and y directions. It uses Fast
Fourier Transform (FFT); without oversampling the image first (which is not implemented
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yet), the number of fringes computed is always integral (due to the discrete nature of FFT).
FFT can only assess the frequency of the major signal in the image, therefore topography
cannot be present in the image. In addition, the script cannot identify fringes which are
not equally spaced (e.g. of the shape illustrated in figure 4.4c). Besides that, the script
is not able to detect a part of a fringe.

On the other hand, the cpxdetrend script does not use FFT for elimination of the fringes,
which allows to eliminate even a non-integral number of fringes or even a part of a fringe
(in both x and y directions). Two planes are constructed using the fringe frequencies in
the range and azimuth directions and then subtracted. Subtraction is performed (like in
other cases) using complex-conjugate multiplication. However, if subtraction of a non-
integral number of fringes is desired (which is our case), the number of fringes to be
extracted must be entered manually and the value should be corrected after the trial.

The detrended version of the interferogram shown in figure 5.1 is shown in figure 6.1.
Detrended version of the interferogram shown in figure 5.2 may be found in figure 6.2.

Figure 6.1: Interferogram processed from the defo 1 pair with subtracted topography
using SRTM DEM. The interferogram was detrended using the cpxdetrend script. The
script was run with the following parameters: -1.9 fringes in the range direction, and -0.3
fringes in the azimuth direction.
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Figure 6.2: Interferogram processed from the topo pair with subtracted topography using
SRTM DEM. The interferogram was detrended using the cpxdetrend script. Theoret-
ically, the phase of this interferogram should be unique. The non-uniqueness may be
caused by an imprecise coregistration of the image and DEM, by changes of the terrain
during 1999–2000 (between acquisitions of the SRTM DEM and the scenes), or by de-
formations occuring during one day (improbable). Atmospheric delay change would have
caused a long-wavelength trend in both azimuth and range directions. The script was
run with the following parameters: -3 fringes in the range direction, and 0 fringes in the
azimuth direction.

However, the cpxdetrend script can only eliminate a constant frequency, or a linear phase.
After that, some trend may remain in the image, but this is no more linear and cannot
be eliminated by another run of the cpxdetrend. This is a consequence of the simplicity
of the method.

In cases where the perpendicular baseline is near zero, the phase looks like figure 4.4c. In
this case, the cpxdetrend script fails entirely because the phase is no more linear and the
sign of frequency changes. However, the phase changes very slowly in this case, and the
fringes may not be seen at all for smaller crops.

In addition, the cpxdetrend script does not provide any information about how long the
baseline should really be. We can conclude that the cpxdetrend script should be used for
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making the deformation spots in the interferogram better detectable, but not for baseline
correction.

6.2 Baseline correction with respect to residual fringes

In this section, we will try to adjust the orbit parameters according to the residual phase
in the interferogram. In contrast to the above described cpxdetrend script, we will try not
only to detrend the interferogram, but also to obtain more precise baseline parameters.

As noted above, the interferogram is only a relative measure, resulting in the fact that it
is never possible to obtain correct values for both satellite positions. The only parameter
to be adjusted is the baseline — i.e. we will consider the orbit of the master satellite to
be correct and will only adjust the orbit of the slave satellite.

6.2.1 Adjustment according to [18]

This procedure is described in [18] and also in [12]. Suppose we have an interferogram
and label its four corners A, B, C, D (see figure 6.3).

Figure 6.3: The illustration of the baseline adjusting procedure. This image was copied
from [18]. Only a black-and-white copy of the article was available.

Let us first cite from [18]: Here we count 15 fringes from point A to B, so the distance
between satellite 1 and B should be lengthened by 15 times half the wavelength. If distance
AB remains unchanged, the correct satellite position lies at the intersection of the two
arcs at S ′

1. Keeping A as a reference, we find that distance DS2 should be lengthened (by
4 cycles) and distance CS2 shortened (by 10 cycles), which puts the refined position at



6.2. BASELINE CORRECTION WITH RESPECT TO RESIDUAL FRINGES 65

the end of the interferogram at S ′
2. Using the refined trajectory and reprocessing the radar

data suppresses orbital fringes.

The description is very strict here: the sign of the residual phase change (frequency) is
not defined, although it is recognized. In addition, the sign of the distance changes to be
adjusted also depends on the sign of the fringe frequency.

6.2.2 The critique described in [12]

Book [12] comments the above approach, and describes it more clearly: In this approach,
one satellite position is fixed, while the second one, indicated in figure 6.4, is changed in
two steps. First, since the range distance R2,nr to the first pixel in range can be kept
constant, the position of the satellite needs to be somewhere on curve 1. By counting
the number of fringes between near-range and far-range, range vector R2,fr needs to be
changed in length, denoted as step 1. Keeping this value for R2,fr, the position of the
satellite needs to be somewhere on curve 2. Therefore, in step 2, the position is moved to
the cross-section of curve 1 and 2. Using the same approach in azimuth direction, residual
azimuth fringes can be eliminated.

Figure 6.4: The illustration of the error in the approach described in [18]. This figure is
copied from [12].

Although it seems that this approach solves for the error vector ~n this is in fact not totally
true. In fact, the method corrects only for the change in the parallel component of the
error vector n‖
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δn‖(R2) = n‖(R2,fr)− n‖(R2,nr),

which causes the residual fringes in the interferogram. The method does not correct for the
perpendicular component of the error vector, n⊥, and still leaves an error in the height
conversion factor. In figure 6.4B it is shown how this method fails finding the correct
position of the satellite. The a priori position of the satellite is indicated as position 2.
The error vector ~n points from position 1 to 2. As B is often much larger that n, the
major part of the reference phase is decreasing with range, indicated by the boldly drawn
parallel component of ~B. The reference phase from this baseline can be eliminated totally.
The orientation of the error vector ~n is not known, though. From the figure it is clear how
n‖ is also decreasing with range. The length change of n‖ from near-range to far-range is
directly related to the number of residual fringes in the interferogram.

Since n‖(R2,nr) is unknown, we can only observe the residual fringes in the interferogram,
which are equivalent to δn‖(R2). In fact, we observe from the interferogram that R2,fr

is too short by δn‖(R2). Correcting for this error is indicated as step 1 in figure 6.4B.
Keeping R2,nr constant, the position that [18] would find will be the intersection of curve 1
and 2, indicated as position 3. It is clear from the figure that this method might eliminate
the residual reference phase, but it decreases the perpendicular baseline B⊥, whereas the
correct solution increases B⊥.

6.2.3 Analysis of the procedure

For the analysis of the procedure, we will use the notation used in chapter 4. The baseline
error vector is here −dB, because it is defined as

dB = Br −B, (6.1)

dB⊥ = B⊥r −B⊥, (6.2)

where B is the correct baseline and Br is the reference baseline used for reference flat-Earth
phase computation. The residual fringe frequency (determined from the interferogram) is
(4.12)

df =
4π

λ
dB⊥.

This means that if df > 0, the residual reference phase grows throughout the interferogram
and dB⊥ is also positive.

The formula for flat-Earth phase subtraction looks like this (4.10):

∆Φ− ΦE = −4π

λ
(B‖ −B‖r),

therefore if the residual phase grows, the absolute value of the reference flat-Earth phase
should be smaller. However, as described in [12], the flat-Earth phase corresponds to
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the parallel baseline, i.e. the difference between the distance between a point P and the
master and slave satellites (formulas (2.4) and (2.9)) is:

B‖ = RA −RB = B sin(Θ0 − α) = − λ

4π
ΦE.

This means that if the absolute value of the flat-Earth phase is too large at far range, the
distance RB between the slave satellite and the point at the far range should be lengthened
with respect to the distance RA. As noted above, the position of the master satellite A
remains the same.

o

far rangenear range

a

a

b

b + dR
B B1 2

Figure 6.5: Change of the distance between the slave satellite and a far-range point with
respect to the errorneous perpendicular baseline. Here, dR < 0 and o⊥ < 0.

Changing the distance between the point at the far range and the slave satellite may have
two effects (see figure 6.5):

• if the distance is lengthened (dRB > 0), o⊥ > 0,

• if the distance is shortened (dRB < 0), o⊥ < 0,

where o⊥ is the perpendicular part of the baseline adjustment. Here it applies that
sign (dB⊥) = sign (o⊥), therefore the perpendicular part of the baseline is adjusted in the
right direction (in contrast to [12]).

Now, let us analyse the adjustment in more detail, not only the sign, but also the value.
The situation is illustrated in detail in figure 6.6.

For the satellite positions B1 and B2, the following equations apply:

x2
1 + y2

1 = x2
2 + y2

2 = a2, (6.3)

(x1 − k)2 + y2
1 = b2, (6.4)

(x2 − k)2 + y2
2 = (b− dR)2, (6.5)
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o

dΘ
dΘ
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k

a
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near range far range
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dx
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B2[x , y ]

1[x , y ]1
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Figure 6.6: Illustration of the orbit adjustment.

and the difference dx between the two points may be derived:

dx = x2 − x1 = −
bdR− dR2

2

k
. (6.6)

Because b � dR, we can simplify the equation to

dx = −bdR

k
. (6.7)

If the baseline adjustment is small, i.e. dR � b, the direction of the adjustment is
perpendicular to the radar ray (at near range).

The perpendicular baseline adjustment then looks like (see figure 6.6)

o⊥ =
dx

cos(Θ + ε)
= − bdR

k cos(Θ + ε)
. (6.8)

If the residual fringe frequency is df , then the phase of the interferogram at far range is
df · dΘ. This means that the distance between the far-range point and the slave satellite
should be corrected by

dR = − λ

4π
dfdΘ. (6.9)
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The distance k between the near-range and far-range point is approximately k = b·dΘ
cos(Θ+ε)

,
resulting in

o⊥ =
λ

4π
df = dB⊥. (6.10)

That means that the baseline is corrected in the right direction. An approximation have
been made during the derivation: b � dR has almost no influence. Of course, as discussed
in chapter 4, the frequency is not constant throughout the interferogram; on the other
hand, the perpendicular component of the error baseline (and the baseline adjustment,
too) is not constant either.

Book [12] (figure 6.4) is probably wrong in the sign of the slave slant range adjustment. In
addition, the change of the parallel baseline between the near and far range corresponds
to the perpendicular baseline (absolute value), because

n⊥ =
dn‖

dΘ
, (6.11)

i.e.

δn|| ≈ n⊥δΘ, (6.12)

where δΘ is the difference in the look angle between the near and far range.

As described in section 4.6, the azimuth fringes are caused by a change in the baseline
error and their number is usually neglectable. The error may be corrected with the
procedure described in section 6.2.1. However, we propose another method: if we perform
the baseline adjustment for enough lines in the interferogram, the azimuth fringes do
disappear because the error baseline should be zero for all the lines of the interferogram.

6.2.4 Practical background of the procedure

The approach of adjusting baseline parameters with respect to the residual fringes requires
the coordinates of the scene corners to be known, as well as the actual coordinates of both
satellites. DORIS only allows us to know the satellite coordinates in a predefined time
(for other timings, it may be interpolated).

The coordinates of the scene corners may be obtained from a different source (another
geocoded image, map etc.). If geocoding in DORIS, the same satellite parameters are
used, causing error. In addition, the orbits must be first corrected for the along-track and
across-track errors (the large values, causing the scene shift).

Of course, the procedure may be iterated. Unfortunately, we are unable to try this
approach, therefore we cannot say if the procedure converges or not.

6.2.5 Approach described in [28]

Paper [28] proposes to find the baseline parameters using a different method, based on
the same principle. In the authors’ words:



70 CHAPTER 6. DETRENDING THE INTERFEROGRAMS

The baseline and slant range vectors

~Bi = Bn,i~n + (Bc,i~c + αti)~c, (6.13)

~ri = rn,i~n + rc,i~c, (6.14)

where ti represents the time at which the point was acquired (relative to mid-scene). The
coefficient α is used to model the baseline’s across-track azimuth convergence (caused by
non-parallel orbits), while Bn,i and Bc,i represent respectively the normal and cross-track
components of the baseline at the mid-scene. (Vectors ~n and ~c denote the radial and
across-track components of the orbit, respectively. The slant range vectors are related to
the master satellite.)

The phase unwrapping procedure provides the interferometric phase Φi up to an unknown
constant Φc. (...) One can construct a linear model for the phase difference:

Φi =
4π

λ

~ri
~Bi

|~ri|
− Φc. (6.15)

Using the expressions for the look vector and baseline (equations (6.13) and (6.14)) one
then has:

Φi −
4π

λ
rn,iBn,i =

[
4π
λ

rc,i
4π
λ

rc,iti −1
]  Bc

α
Φc

 . (6.16)

Three tie points allow one to create a system of equations that can be inverted to solve for
the model parameters. The three tie points used to solve the system of equations would be
well-distributed across the scene to avoid singularities. Improved accuracy can be obtained
by using more tie points, and performing a non-linear least squares (LS) fit using the
iterative Levenberg-Marquadt algorithm.

Comments

This procedure uses a different notation: in formula (6.15), the expression ~ri
~Bi

|~ri| denotes
the parallel baseline, different for each range pixel.

In comparison to previous approaches, this approach approximates the vertical baseline
by a constant, and the horizontal baseline by a linear function. In case of more tie points,
both of them may be approximated by a more complicated function, which must be
expressed explicitly.

Also, let us write here the ”correct” version of formula (6.16) (according to formula (6.15):

Φi −
4π

λ

rn,iBn,i

ri

=
[

4π
λ

rc,i

ri

4π
λ

rc,i

ri
ti −1

]  Bc

α
Φc

 , (6.17)

allowing to be written as
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Φi −
4π

λ
cos ΘiBn,i =

[
4π
λ

sin Θi
4π
λ

sin Θiti −1
]  Bc

α
Φc

 . (6.18)

Let us stress here that the parameter α does not mean baseline orientation, but track
convergence.

In equations (6.17) and (6.18), all of the Θi, ri, rc,i and rn,i must be computed first.
Although it may seem that the slant range ri is known, the precision of the value is much
worse (the slant range pixel size is about 10 m).

In addition, equations (6.16), (6.17) and (6.18) assume that the vertical baseline is correct,
i.e. that its error is much smaller than that of the horizontal component.

If we also wish to adjust he vertical component, equation (6.18) should be rewritten to

Φi =
[

4π
λ

cos Θi
4π
λ

sin Θi
4π
λ

sin Θiti −1
] 

Bn

Bc

α
Φc

 , (6.19)

allowing for the non-linear adjustment as suggested in [28], because of the different pre-
cision of the vertical and horizontal baseline components.

6.3 Comparison of the methods

There are three important differences between these two methods and the cpxdetrend

script:

• For cpxdetrend, no coordinates are needed. For the other methods, some tie points
are required.

• The methods in [18] and [28] allow to correct the baseline parameters and geocode
the image.

• Cpxdetrend is a simple approach, applicable for small scene crops because it approx-
imates the residual phase by a linear function. In addition, the number of fringes
can be only determined as an integral value; the fraction must be estimated.

The differences between the approaches suggested in [18] and [28] are the following:

• The procedure suggested in [18] is simpler and more illustrative; however, it does
not allow to consider the precision of each baseline component.

• The procedure suggested in [18] considers only four tie points and the baseline
parameters only at the first and last line of the scene. However, the scene may be
split into parts and the baseline parameter adjustment may be performed for more
tie points. On the other hand, [28] allows to approximate the baseline parameters
by an explicit function.
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• The procedure suggested in [28] also finds the phase-unwrapping constant Φc, which
is probably not useful any more.

• While procedure suggested in [18] requires the actual distance between the satellites
and the tie points to be known, the procedure suggested in [28] requires only the
knowledge of the look angle Θ for each pixel.

6.4 Geocoding the original scene using tie points

It is difficult to geocode the slant-range image using tie points. We tried to geocode the
magnitude image with the help of a geocoded Landsat optical image, covering a large part
of the radar scene (however, it was not the entire scene). In addition to different scattering
features of both signals (although water is almost perfectly ”black” in the optical images,
it is not the case of the radar images because of imperfect SAR processing), the pixel
length (in the range direction) is not constant throughout the image (at close range,
the pixels are about 50% longer than those at far range). The analytical form of the
transformation is

x =
√

z2 − h2, (6.20)

where z is the slant range (i.e. the position of a point in the radar image, x is the ground
range (i.e. the position of a point in an optical image) and h is the height of the satellite.

Let us approximate formula (6.20) with a polynomial

z − z0 = a0 + a1(x− x0) + a2(x− x0)
2 + . . . + an(x− xn)n +On+1, (6.21)

where On+1 is the maximum approximation error of the polynomial of the order n, x0

and z0 are the coordinates of the scene center (ground and slant range) and

ai =
1

i!

diz

dxi
for i = 1, 2, ... n. (6.22)

The term a0 corresponds to the shift between the images and is not considered here.

For the case of formula (6.20), these coefficients can be expressed as

a1 =
x√

x2 + h2
, (6.23)

a2 =
1

2

h2

(x2 + h2)
3
2

, (6.24)

a3 = −h2

2

x

(x2 + h2)
5
2

, (6.25)

a4 = −h2

8

(h2 − 4x2)

(x2 + h2)
7
2

, (6.26)

a5 =
h2x

8

3h2 − 4x2

(x2 + h2)
9
2

, (6.27)

On = |an| dxn, (6.28)
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etc.

For evaluation of these coefficients (and the residual errors), we need to know that x ≈ 250
km, dx ≈ 50 km (half of the scene), h ≈ 780 km. The evaluated maximum approximation
errors are shown in table 6.1.

order n an[m−n+1] On[m]

1 0.30 1500
2 0.55e-3 1375
3 -2.1e-7 26
4 -1.1e-10 0.69
5 1.8e-13 0.056

Table 6.1: The coefficients of the polynomial and the maximum error of the polynomial
approximation.

It can be seen from table 6.1 that the second-order polynomial approximation is sufficient
for scenes where one pixel is 20 to 30 m long. In addition, the tie points cannot be
determined with such a high precision of one pixel, because of the imperfectly focused
radar images. The distribution of tie points is not perfect due to the fact that only large
water surfaces are detectable in the radar magnitude image.

Results

For geocoding, 9 tie points were used, their distribution was not optimal, however. Only
approximately half of the crop was covered, due to the reasons cited above. The trans-
formation residual RMS was 11.95 pixels in the range direction and 0.76 pixels in the
azimuth direction for the first-order polynomial approximation, and 3.95 pixels in the
range direction and 3.21 pixels in the azimuth direction for the second-order polynomial
approximation. The PCI Geomatica software does not allow different transformation in
each direction. The scene crop was then transformed using the second-order polynomial
approximation.

However, the RMS of the residuals depends largely on the size of the crop to be geocoded;
for large scenes, the RMS error is much larger.

method orbits (DORIS) tie points difference
corner Y [m] X[m] Y [m] X[m] Y [m] X[m]

north-east 753 975 972 720 741 087 958 587 12 888 14 133
south-east 778 344 1 032 872 764 249 1 009 226 14 095 23 646
south-west 855 807 1 002 636 815 669 989 248 40 138 13 388
north-west 831 967 942 419 792 567 938 665 39 400 3 754

Table 6.2: The geocoding difference between using tie points (in a slant-range image) and
DORIS geocoding for the topo pair. Geocoding using tie points was performed in PCI
Geomatica software. The coordinates are in the S-JTSK coordinate system.



74 CHAPTER 6. DETRENDING THE INTERFEROGRAMS

However, geocoding of the image using tie points does not allow us to get heights. The
(unwrapped) interferogram phase does not correspond to the height directly, it represents
the distance between the place on the Earth and the satellite; in order to get the height,
it must be converted (the look angle is different for different pixels).

6.5 Direct geocoding

In DORIS, geocoding is computed with the use of satellite positions. In fact, there is no
other way to perform slant-range to ground-range conversion. However, this is not precise
due to the errorneous satellite positions, and we decided to compare the geocoded image
to the same LandSat image as in the last section.

For conversion from the radar to the geographic system, the height of a point above the
ellipsoid must be known (at least approximately). DORIS only allows to geocode an
interferometric DEM; at the same time, all other images (magnitude, differential inter-
ferogram, coherence) are geocoded. But if the unwrapped interferometric DEM does not
exist, the problem is much more complicated.

Let us stress here that geocoding with no DEM at all cannot be performed or would be
very inaccurate. We can also use an external DEM (e.g. SRTM) but in that case we need
to shift the DEM in order to compensate for the interferogram shift (see section 5.3) and
then consider this to be the created DEM and use it for geocoding.

The shift of the DEM cannot be determined to a precision of a pixel; but depending on
the height ambiguity, the error does not have to cause a large geocoding error, especially
in a flat terrain.

However, this approach is not as clear as regular geocoding, i.e. geocoding using the
height from the unwrapped interferogram. The differences are following:

• the interferogram was constructed from the scenes and therefore the correct val-
ues of satellite orbits apply, while the interferogram simulation (radarcoding) was
performed using the known orbits;

• the interferogram unwrapping may have failed and geocoding can never be per-
formed well for the case of the classical interferogram;

• even if unwrapping succeeded, there is no way to determine the initial height value
of a pixel; i.e. the unwrapped phase may be shifted by an integer multiple of 2π
without any consequences; this causes that all the interferogram heights are shifted
by an integer multiple of height ambiguity.

The described approach uses the known satellite orbits and it only helps to correct the
along-track orbits (but the precision of the correction is not sufficient for interferogram
improvement). Across-track and radial orbits may be corrected too, but they are also
used for interferogram creation and height ambiguity computations.
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Results

The geocoded scene was compared to a previously geocoded LandSat scene in order to
see the influence of the orbit errors on the geographical coordinates. However, we were
not able to geocode the entire crop displayed, e.g., in figure 5.1, but only a part of it,
1000 pixels in both directions (i.e. 5000 pixels in azimuth of the original scene). The
coordinates are shown in table 6.3, the situation is illustrated in figure 6.7.

As noted above, the magnitude image itself is not sharp, and its sharpness was further
damaged by resampling (within transformation from slant range to WGS-84 and then to
S-JTSK). We therefore estimate the precision of the radar coordinates not to be worse
than 200 m.

LandSat scene DORIS geocoding difference
point Y [m] X[m] Y [m] X[m] Y [m] X[m] total [m]

1 761,248 990,738 761,149 986,280 -99 -4458 4459
2 762,845 988,646 762,429 984,480 -416 -4166 4187
3 780,107 978,546 779,589 974,620 -518 -4226 4258
4 772,720 975,411 772,269 971,120 -451 -4219 4243
5 781,337 980,464 781,309 975,280 -28 -5184 5184
6 759,357 980,590 759,229 976,000 -128 -4590 4592

Table 6.3: The geocoding errors for the defo 2 pair. All values are in the S-JTSK coordi-
nate system.
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Figure 6.7: Illustration of the tie points in the scene crop. Crosses denote the radar-
geocoded points, the arrows aim at the correct point. The bullets denote the crop corners.

Please note that the originally (in slant range) almost squarish scene is now elongated.
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In figure 6.7, one can clearly see that the scene is mostly shifted in the azimuth direction,
i.e. the shift is caused by the along-track orbit error.

Table 6.4 shows the shift of the tie points (defined in table 6.3) in the azimuth-range
coordinates. The azimuth direction was computed from the coordinates of the scene crop
corners (average between the direction in close range and far range), σaz = 201.64 ◦.

point azimuth shift [m] range shift [m]

1 4107 1736
2 3719 1923
3 3737 2040
4 3755 1975
5 4808 1938
6 4219 1812

average 4058 1904

Table 6.4: The tiepoint shifts from table 6.3 converted to the azimuth-range coordinate
system.

It may be seen from table 6.4 that the along-track error, projected on the Earth surface,
is about 4 km.

The range error may be caused by both across-track and radial orbit errors. A little part
of it may be also caused by a DEM error (there are holes in the DEM which we did not
interpolate) but this can only be attributed to the variance.

Rather than by orbit errors, the shift in the range direction may be caused by a small
rotation of the satellite with respect to the value of look angle Θ for which processing was
performed: for the distance of 850 km, the shift of 1900 m corresponds to 0.13◦. However,
we have no information about the tolerance and precision of the rotation recording.

That means that after geocoding in DORIS, the scene should be geocoded once more
using tie points. Here, linear transformation is sufficient.
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Conclusions

The thesis has analysed the influence of orbit errors on interferograms. Not only the two
scenes are shifted with regard to each other and the interferogram is shifted with respect
to a DEM, but the interferogram also looks sloped. This is the most important influence
for deformation mapping, because the long-wave phase change caused by the orbit errors
may make the places of deformation wrongly visible in the interferogram.

The orbit errors are partly caused by improper modeling of the Earth gravity field, and
partly by improper model of satellite geometry. While the error in the Earth gravity
field only causes the geographically-dependent orbit errors, the errors in the modeling of
the atmospheric drag and solar radiation pressure influence on the satellite cause errors
which are geographically independent, i.e. they differ in different passes above a given
area. These are the errors which have impact on the interferograms.

The influence depends not only on the size of the orbit errors, but also on the orientation
of the error vector which can not be estimated in advance, in contrast to its length. For
three-pass interferometry, the difference between the error vectors is even more important
than their own lengths and orientations. The influences of the orbit errors are reduced
if 0 < p < 1 (p is the ratio of the perpendicular baselines of the two pairs), otherwise
they are added up. It is clear that the three-pass interferometry is the best method to
reduced the orbit error influence, although it is not always possible (due to the limited
data amount).

On the other hand, the residual interferogram slope may be used to correct for the orbit
errors in the radial and across-track directions. However, due to the fact that the interfer-
ogram is only a difference between two acquired scenes, it is not possible to correct both
satellite tracks – we are only able to use the interferogram slope to correct the baseline –
its horizontal and vertical components.

The shift of the scenes with regard to each other may be used to correct the along-track
orbit error (timing error), which is the largest of all the components. However, it is again
only possible to correct it relatively to the master satellite track.

The shift of the processed interferogram with regard to the reality is caused mostly by
the master-satellite orbit error. This is the only measure of the orbit error of the master
satellite. Knowing the shift, we are able to correct for the along-track error, which is
probably larger than a few decimeters. However, the shift of the scene in the range
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direction is probably caused not only by the radial and across-track components of the
orbit error, but also by a wrong value of the look angle Θ with which it is processed.

Unfortunately, we are now unable to correct for the orbit errors influence, except for
the simple and imprecise cpxdetrend script. The other ways, which allow to adjust the
baseline length and orientation, are only analysed theoretically and will be the subject of
our future work (see the following chapter).



Chapter 8

Future work

In the future, we would like to continue our work dealing with the orbit adjustment with
respect to residual fringes in the interferogram.

A disadvantage of all the cited methods to eliminate the residual fringes is that the residual
phase or fringe frequency must be estimated manually, there is no possibility to compute
it automatically (except for FFT, which is discrete).

We would like to develop a method for automatic adjustment of the orbits, based on
phase coregistration of the interferogram and a radarcoded (external) DEM. The first
(and probably the most important) reason for that is that it should improve the existing
coregistration, which must be estimated manually and does not allow to shift the DEM
by a non-integral number of pixels, causing artifacts in the image.

The coregistration procedure consists of three steps:

• shift vector determination in some points of the image,

• approximation of these vectors by a continuous function,

• resampling of the image.

For the second and third step, we plan to use the functions already implemented in
DORIS. The only procedure to be implemented is the shift vector determination.

Phase coregistration is not as straightforward as the magnitude coregistration. There are
two basic reasons for that:

• the phase is wrapped, e.g. values which, mathematically, seem to be far away from
each other, may be actually very close,

• the phase difference between the interferogram and the radarcoded DEM may be
non-zero and slowly changing.

It is not adviceable to unwrap the phase before phase coregistration: phase unwrapping
may cause significant errors. We suggest the following procedure to perform phase coreg-
istration:
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1. Suppose we know an approximate shift vector (with the precision of 10 pixels).

2. The interferogram is split into many small parts (e.g. 100 pixels in each direction)
and each part is processed independently.

3. The optimal shift between a given part and the corresponding crop of the radarcoded
DEM is found. One of the images is shifted in order to exactly overlap with the
other.

4. The exactly overlapping parts of the images (interferogram and DEM) are sub-
tracted from each other. The result is a difference image and should be a little
sloped (in correlated areas).

5. An approximate slope of the entire image is evaluated; it may be combined from
two factors: the slopes of the small parts of the image (if the slope is large) or the
difference between the mean phase values of the small difference images in different
parts of the entire image (if the slope is not large enough to be recognized in the
small image). However, it is neccessary to perform phase unwrapping here, we hope
that the errors will not propagate to the entire-scene values.

6. The mean value of the difference phase, determined from coherent areas, is sub-
tracted from the small crops of the interferogram.

7. The computed slope (for the entire scene) is also subtracted from the small crops of
the interferogram.

8. The interferogram is reconstructed and shift vector estimation is performed once
more.

9. The slope of the interferogram (evaluated in different parts) serves for orbit adjust-
ment, performed using either of the methods described in section 6.2.

During the computations, the small parts of the images are to be oversampled in order to
make the shifts more accurate.

A disadvantage of this procedure is that the approximate shift must be known in advance,
i.e. it must be estimated manually. However, the interferogram and the DEM are better
coregistered, allowing to eliminate the artifacts from the interferograms.

An advantage of this procedure is that it performs geocoding at the same time (it assigns
each pixel of the interferogram to a pixel in the radarcoded DEM which is computed using
the geocoded DEM).

This procedure is correct if the DEM is radarcoded with use of the correct baseline
parameters; therefore, these must be at least approximately known in advance. We hope
that the method converges.



Software and Data Used

Software

For interferogram creation, we use the open-source software DORIS (Delft Object-oriented
Radar Interferometric Software), developed at TU Delft [15].

Phase unwrapping is performed in the open-source SNAPHU (Statistical-Cost Network-
Flow Algorithm for Phase Unwrapping) program. This program is implemented as de-
scribed in [2, 3, 4].

For graph computation and plotting, we use the open-source software OCTAVE and
GNUPLOT.

For detrending the interferogram, we use the cpxdetrend script, also developed at TU
Delft, to be run under MATLAB.

For DEM data handling, we use open-source GRASS GIS (Geographic Resources Analysis
Support System), originally developed at U.S. Army Construction Engineering Research
Laboratories, now developed by the world-wide community.

For conversion of individual points between the S-JTSK and WGS-84 coordinate systems,
the MatKart software, developed at the Department of Mapping and Cartography, the
Czech Technical University, is used.

However, conversion of the entire scene crop (section 6.5) was performed in the ArcInfo
software.

Data

Three SAR scenes were processed, acquired at March 7th, 1999 (ERS-1), March 8th, 1999
(ERS-2) and December 28th, 1998 (ERS-2), all of them at orbit no. 20288. Data were
provided by ESA through a category-1 project.

As an external DEM, we use the SRTM DEM acquired by the Shuttle Radar Topography
Mission [21] in February 2000.

For data geocoding, an optical image of a similar locality acquired by Landsat TM in
1998 was used. Geocoding of the image was performed using a map at 1:50,000 scale.
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